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Abstract

It is well established that climate change affects economic production, but its effects on trade
costs have not been studied. I use international trade and weather data covering almost 200
years to show that climate change increases trade costs. Estimating a simple augmented gravity
framework, I find that rising temperatures at the origin or destination country increase bilateral
trade cost. I use a standard trade model to quantify the welfare impact of increased trade cost,
finding that the impact of climate change on trade cost over the preceding 100 years reduced
welfare in the 2010s by 0.72 percent. Welfare gains depend not only on countries’ own climate
trends, but also on their trends relative to neighboring countries — when countries see less
drastic climate change than their neighbors, they see relative trade cost gains. Looking at
the distribution of gains, poor and rich countries are equally harmed by trade cost increases
due to climate change. Smaller economies, which are more reliant on international trade, are
especially affected. A counterfactual exercise shows that ignoring this channel leads to a 28
percent underestimate of the welfare impact of climate change. Because it is based on a gravity
estimation, my methodology can easily be embedded in studies of the impact of climate change.
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Existing analyses of the effect of climate change take trade costs as given and focus on the

effect on productivity. Trade costs, however, are shaped by the same economic forces as production

activities, for example, worker productivity and the availability of labor and capital. Does climate

change, then, directly affect trade costs, just as it does other forms of economic activity?

I use trade and weather data covering the last 190 years to show that climate change indeed

increases bilateral trade cost. I estimate an augmented gravity framework with one simple addition,

an interaction between distance and decadal averages of temperature at the origin and destination

countries. I find a significant, negative impact of climate change on trade cost. I show that the

results are robust to various specifications of the effect of distance on bilateral trade flows.

I embed these estimates in a standard model of international trade (Eaton & Kortum, 2002) to

quantify the welfare impacts. I find that welfare in the 2010s would have been 0.72 percent higher if

climate change had not increased trade over the preceding 100 years, purely due to the resulting

reduction in trade costs. Welfare gains depend not only on countries’ own climate trends, but also

on their trends relative to neighboring countries — when country i’s neighbors face more drastic

climate change than i itself, country i experiences a relative trade cost reduction. Reverting that

change thus benefit i less, since its relative position declines. Poor and rich countries benefit equally.

Benefits are especially large for smaller economies, which are more reliant on international trade. A

simple counterfactual exercise shows that ignoring the trade cost channel I highlight leads to a 28

percent underestimate of the welfare impact of climate change. My findings are especially relevant

given that the welfare impact of climate change on poor countries, for example sub-Saharan Africa,

depends crucially on the level of trade costs those countries face (Porteous, 2024).

Since I only rely on an augmented gravity specification, the effect of climate change on trade

cost I demonstrate in this paper can easily be included in estimations of the impact of climate

change. This is especially true for estimations based on the broad class of trade models that allow

for gravity estimation to be solved separately from the rest of the model.

This paper contributes to the literature on the impacts of climate change in equilibrium. Existing

studies generally estimate how trade affects productivity (Costinot, Donaldson, & Smith, 2016; Cruz

& Rossi-Hansberg, 2021; Desmet, Kopp, Kulp, Nagy, Oppenheimer, Rossi-Hansberg, & Strauss,

2021; Huppertz, 2024; Nath, 2020; Porteous, 2024). They model climate change counterfactuals

with reduced productivity but an unchanged trade network. That is, while different countries (or

sectors, or firms) become less productive in these counterfactuals, it is no more difficult for those

countries (or firms) to ship goods across the globe as it is today. What I show in this paper is that
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this is too optimistic a baseline. We should expect that under climate change, trade networks are

worse. Using current trade networks to assess the baseline impact of climate change underestimates

its impact. Many existing studies feature counterfactuals that reduce trade cost, to study how

improved trade networks can help mitigate the welfare impact of climate change. What I show here

is that their baseline scenario is already a counterfactual with an improved trade network, namely

today’s trade network, which is an improvement over the actual, degraded trade network we will see

under climate change.

My results also relate to the literature on the carbon cost of trade. Trade itself generates

considerable carbon emissions (Cristea, Hummels, Puzzello, & Avetisyan, 2013; Shapiro, 2016). As

a consequence, as Farrokhi and Lashkaripour (2021) point out, trade policy is one tool that could

be used to curb global emissions. My results suggest that, because climate change increases trade

cost, it will also reduce carbon emissions from trade. The issue is that, as I show in the paper,

the impact of climate change on trade depends on countries’ and their neighbors’ climate trends.

It is therefore a far cry from the optimal, coordinated policy scenario described in Farrokhi and

Lashkaripour (2021). Nevertheless, my results highlight a novel channel through climate change

affects international trade, and it is important to take this channel into account when we model the

impacts of carbon taxes, for example.

The remainder of the paper proceeds as follows: Section 1 discusses the data I use and presents

descriptive statistics, Section 2 describes the gravity equation framework I use for my reduced form

estimation, Section 3 presents results of the reduced form estimation, Section 4 estimates the welfare

impacts of trade cost increases due to climate change, and Section 5 concludes.

1 Data and descriptive statistics

This section presents the data sources I use, as well as some basic descriptive statistics on climate

trends in my sample. I use data on trade flows from the CEPII TRADHIST (TRADHIST) database

of historical international trade data (Fouquin & Hugot, 2016). The data cover yearly international

bilateral trade flows from 1827 until 2014 and contain additional information necessary for estimating

gravity equations. All trade flows are in nominal British pounds (GBP), and I convert these to

real values using data on UK GDP deflators over time from the Bank of England (Thomas &

Dimsdale, 2017). Especially for earlier years, TRADHIST contains trade flows from some origins

and destinations which are not countries. For example, it contains information on trade flows out of

2



colonial administrative areas or individual cities. When I use the word ‘country’ in this paper, I

always also mean these kinds of non-country reporters unless otherwise specified.

I combine these trade flows with Berkeley Earth (BKE) data on monthly average temperatures

(Rohde, Muller, Jacobsen, Muller, Perlmutter, Rosenfeld, Wurtele, Groom, & Wickham, 2013). The

temperature data go as far back as 1753 for some areas, achieve significant global coverage starting

in 1850 and full global coverage beginning in 1960. I have weather data for almost all countries in

the trade data beginning in the 1850s. I use mainly BKE’s combined land and ocean temperature

data set, but augment this with their land only data set, since the latter goes further back in time.

In order to link trade and temperature data, I use country boundaries from the Global Admin-

istrative Areas database (GADM) (Global Administrative Areas, 2022). GADM covers currently

existing countries. TRADHIST, though, also contains information on countries which no longer

exist, such as West and East Germany. For those countries, I create sets of boundaries based on the

GADM data. I then use Python’s xarray and geopandas packages to read in BKE temperature

rasters for each month and calculate averages for each country based on its GADM area.

For counterfactual exercises, I need data that cover not only international but also current

domestic trade flows. This is because, as I discuss in more detail below, my counterfactuals hinge on

knowing current (but not historical) domestic trade shares. For counterfactuals, I therefore also use

the International Trade and Production Database for Estimation (ITPD) (Borchert, Larch, Shikher,

& Yotov, 2021, 2022). This database covers both international and domestic trade flows for a wide

range of countries.

Figure 1 shows the number of countries observed by year for the TRADHIST data. For each year,

I count countries which appear at least once with a non-missing trade flow and distance information

that year, since those are the only observations I can use in estimations. I separately show the

number of origin and destination countries in the data, but the numbers barely diverge. The number

of countries appearing in the data increases until around 1900 and stays roughly stable afterwards.

Figure 2 shows the number of observed trade flows by year. The number of flows observed per year

is a lot higher after 1950. This suggests that post-1950 data give a more complete picture of each

year’s trade network. My main analyses rely on analyzing individual trade flows, however, so this is

not a limitation for my analysis.

To understand how well I am able to match weather and trade data, Figure 3 shows the

percentage of countries which appear in the trade data but have missing weather information across

years. Prior to 1850, I am able to match between 60 and 80 percent of all trade flows. Starting in
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1850, I have non-missing weather information for virtually all countries in the trade data. This is

entirely because BKE provides much better coverage starting in 1850.

Figure 4 shows the number of countries with non-missing weather observations by year. I count

here only currently existing countries that appear in the TRADHIST data. I focus on a fixed set of

countries to show how the BKE data attain global coverage over time — the number of countries

which could appear in the graph never changes, only the number of countries which can actually be

matched to weather information in any given year. For the 1750s, I have weather coverage for a

little over 60 countries. This increases over time, rising sharply in the 1850s. Starting in the 1880s I

have truly global weather coverage.

To showcase global climate trends, Figure 5 shows average temperature in degrees Celsius for

this same set of countries across years, plus a 95 percent confidence interval and ten year moving

average. I start the figure in 1880 because I have global weather coverage starting at that time.

Over time, average temperature rises from around 19.0◦C in the 1880s to almost 20.5◦C in the

2010s. As the moving average shows, global mean temperature increases for most times after 1900,

with an especially fast increase and generally above-trend temperatures beginning in the 1980s.

2 Gravity estimation framework

This section presents the estimation framework I used for my core reduced form results. Augmented

by a time dimension, gravity equations describe trade flows Xnit between an origin i and destination

n at time t as (Head & Mayer, 2015)

Xnit = GtSitMntϕnit

where Sit and Mnt are exporter and importer specific terms, also called multilateral resistance terms

(Anderson & van Wincoop, 2003), and ϕnit is a measure of trade cost between the two countries,

called a bilateral resistance term.

While different models yield different interpretations of what the multi- and bilateral resistance

terms reflect, many international trade models yield a gravity equation of this form. For the purposes

of estimating those gravity equations, the bilateral resistance term is usually modeled as

ϕnit = dα
nie

C′
nitβ
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with dni a measure of physical distance between the two countries and Cnit a collection of bilateral

variables that affect trade between the two countries, such as contiguity or colonial history. The

elasticity of trade flows with respect to distance α could capture preferences (Anderson & van

Wincoop, 2003) or country (Eaton & Kortum, 2002) or firm productivity dispersion (Melitz, 2003).

I augment this basic specification by allowing the effect of distance to vary by temperature,

ϕnit = dα+δ1Tit+δ2Tnt
ni eC′

nitβ (1)

Tct is a measure of temperature in country c during period t, which is fully interacted with distance.

To estimate this, I use origin-period and destination-period fixed effects to model the multilateral

resistance terms (Anderson & van Wincoop, 2003). Accordingly, I drop the level effects of Tct which

are captured by those fixed effects. Since climate change affects countries’ overall productivity,

sectoral composition and output (e.g. Costinot et al., 2016; Dell, Jones, & Olken, 2012; Nath, 2020),

using only origin and destination fixed effects, rather than origin- and destination-period fixed

effects, risks confusing the effect of climate change on output with the effect of climate change on

trade cost. To study the quantity I am interested in — trade cost — I therefore need origin- and

destination-period fixed effects. Note that this specification could be applied to any trade model

that yields a gravity equation, so my estimation results apply to any model in this large class. This

yields an estimating equation

E (Xnit|Dnit) = eγit+ξnt+log(ϕnit)

= exp
{

γit + ξnt + αd̃ni + δ1d̃niTit + δ2d̃niTnt + C′
nitβ

}
(2)

with origin-period and destination-period fixed effects γit and ξnt, and letting Dnit denote the set of

n, i, t covariates. To deal with instances where trade flows are equal to zero, rather than taking logs

of both sides and using the resulting linear model, this is commonly estimated in its exponentiated

form using pseudo-Poisson maximum likelihood estimation (PPML) (Santos Silva & Tenreyro, 2006),

which I follow here.

While temperatures are interacted with distance, this specification simply allows temperatures

to shift trade cost. In a model such as Melitz (2003), for example, ϕnit depends both on the product

of both the variable and fixed costs of trade. The specification I use simply uses bilateral variables to

approximate that bilateral resistance term, regardless what fraction of it is due to variable or fixed
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costs of trade. The thought experiment is this: Every country, for example, Germany, is separated

from every other country by some distance. Shipping goods requires bridging that distance, and

that is costly. As Germany experiences climate change, holding its production fixed, this model

can tell whether it becomes more costly for Germany to bridge those distances. Likewise, it can

tell whether it becomes more costly for other countries to bridge that distance to Germany. The

model allows temperature to increase the cost of bridging a given distance, whether that be due to

increased variable or fixed costs of trade.

Because I deal with temperature changes over long time horizons, I estimate this model across

several periods, each comprising multiple years, rather than using yearly data. In my baseline

specification, I use each decade from 1820 to 2020 as a period t. I calculate decadal averages of

all variables for each origin-destination pair to estimate the model. Using averages is especially

attractive if trade data are interpreted as a (noisy) measure of the true underlying trade network,

since decadal averages are closer to the true underlying value than yearly data.

3 Gravity estimation results

This section presents my core reduced form results, based on the estimation framework laid out

in the previous section. Table 1 shows the results of estimating different gravity equations via

PPML, using the R command fepois from the fixest package (Bergé, 2018). I use the great

circle distance between the origin and destination countries in kilometers to capture dni. While

TRADHIST also contains a population-weighted distance measure, this is available only for a subset

of countries and usually missing for historical countries. I therefore opt for the unweighted distance

measure which is available for all countries. Instead of log distance, I use the de-meaned version

d̃ dm
ni ≡ log(dni) − log(d̄ni) to center interaction terms at the mean distance. (Note that this does

not change the estimated coefficient on distance or its interpretation, it simply makes it easier

to interpret estimates, since all coefficients now reflect the effect size when all variables involved

are at their respective means.) As temperature measures, I use the yearly mean of daily averages

temperature in ◦C. I convert these to z-scores Tct to facilitate the interpretation of effect sizes and

to center interactions at mean temperatures. Cnit contains a common language indicator, contiguity

indicator and indicators for current and past colonial relationships, taking decadal means for all

variables. Standard errors are clustered by country pair with p-values shown in brackets.

The first column shows results for the basic model (2). The second column shows results for a
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robustness check also interacting the variables included in Cnit with both temperature measures.

The third column contains a robustness check which lets α vary over time by interacting d̃ni with

decade indicators; Figure 6 shows the estimated αt across decades. Figure 7 shows coefficient

estimates for δ1 and δ2 from a model which additionally allows for time-varying coefficients on

the temperature variables. (That is, δ1 and δ2 vary across decades, by interacting their respective

variables with decade indicators.) Figure 8 shows the corresponding coefficients on distance. The

fourth column shows results for a model replacing the origin-decade and destination decade fixed

effects from (2) with separate origin, destination and decade fixed effects, as well as origin- and

destination-specific time trends. This allows me to include level temperature effects. The downside

is that this specification controls for country-specific movements in output or productivity over time

only via linear time trends. It can thus confuse effects of temperature on output or productivity,

which I do not study here, for effects on trade cost, which is the focus of this paper. The fifth

column uses the population-weighted great circle distance instead of the unweighted measure. The

downside of this measure is that it is not available in TRADHIST for countries which no longer

exist, so I lose some observations. The last column shows a benchmark model without temperature

variables. Finally, Figure 9 shows coefficients on distance over time from a benchmark model without

temperature variables.

As expected from the previous gravity literature, I consistently find a negative and significant

effect of distance on trade flows. My baseline specification yields that, at the mean origin and

destination temperatures, a one percent increase in distance decreases trade flows by 0.589 percent.

The magnitude for the distance effect itself is roughly comparable to the estimates from Santos

Silva and Tenreyro (2006), who find that a one percent increase in distance decreases trade flows by

0.784 percent.

The novel empirical result in this paper is that I consistently find that temperatures at both the

origin and destination increase this negative effect of distance. That is, rising temperatures make it

harder to cross a given distance. I find that each one standard deviation increase in temperature

at the origin decreases trade flows by a further 0.041 percent. Similarly, a one standard deviation

increase in temperature at the destination decreases trade flows by an additional 0.038 percent.

Looking at the time-varying effect estimates in Figure 7, temperature at both the origin and the

destination tend to have a negative and statistically significant impact on trade flows. This is

especially true from the 1880s onward, where I have global weather coverage, and the 1910s onward,

where the number of countries in the trade data stabilize. Overall, I thus find that climate change
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increases trade cost.

To put these numbers into perspective, between the 1910s and the 2010s, for example, the average

country saw an increase of about 0.16 standard deviations in its temperature z-score. Combining

that with my coefficient estimates, over the last 100 years, the average country would see the effect

of distance on trade flows increase by a little over one percent, both as an origin and as a destination.

This may sound like a small change. It is important to keep in mind, however, that this trade cost

increase applies to every connection this country has to the rest of the world, which could compound

the equilibrium effect of this small change. In addition, climate change affects all countries, so

all countries simultaneously see their trade cost increase. The equilibrium implications of that

simultaneous impact are worse than if just one country became more disconnected from the world.

Section 4 assesses the equilibrium impacts of the trade cost effect I find.

Note that, because of the long time horizon of the data I use, these results incorporate adaptation

to climate change. Since I actually observe climate change directly, rather than having to make

inferences about the impact of climate change from a short period’s worth of weather data, any

adaptation effects will be incorporated into my coefficient estimates. This is similar to the long

differences used in Burke and Emerick (2016). If countries become better at dealing with climate

change over time, this could show up in time-varying interaction effects between temperature and

distance shown in Figure 7. Suggestively, especially looking at periods starting with the 1910s,

where start having more trade observations, coefficient point estimates become smaller in magnitude

over time. This might suggest that countries do become somewhat better at coping with climate

change over time. Many of these coefficients are not statistically significantly different from each

other, however, so this is purely a suggestive pattern in the data.

These results of course raise the question: Why would climate change affect trade cost? The

most obvious mechanism is that shipping and receiving goods is an industrial task much like many

others. It involves both manual and cognitive labor. It is well established that weather shocks and

climate change affect the productivity of both of these kinds of labor and of industrial firms more

generally (Adhvaryu, Kala, & Nyshadham, 2019; Carleton & Hsiang, 2016; Huppertz, 2024; Nath,

2020; Somanathan, Somanathan, Sudarshan, & Tewari, 2021; Zhang, Dêschenes, Meng, & Zhang,

2018). Through the same channels that climate change affects manufacturing firms, it can also affect

the efficiency of dock and freight operations. Indeed, Brancaccio, Kalouptsidi, and Papageorgiou

(2020) point out the endogeneity of transportation cost in general and with respect to port efficiency

(modeled as port cost in their paper) in particular.
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While we lack research on the impact of climate change on port efficiency, policy makers are

concerned about this issue. The United Nations Conference on Trade and Development has noted

that seaports are especially affected by rising sea levels and the associated increased risk of storm

surges (Asariotis, 2021). The Environmental Defense Fund notes that Hurricane Katrina caused USD

2.2 billion in damages to US port infrastructure, and that climate change increases the frequency

and severity of such storms. Inland flooding or droughts disrupt the connections between domestic

producers, consumers and international ports, making ports less useful as connections to the rest

of the world. Finally, heat waves have already led to multi-day port shutdowns, for example, in

Melbourne, Australia in 2009 (Van Houtven, Gallaher, Woollacott, & Decker, 2022). All of these

are examples of increases to trade cost due to climate change.

Shipping companies and port operators themselves are also aware of this problem, and engaging

in costly actions to deal with it. Maersk, one of the largest international freight operators, recently

engaged the Zurich Insurance Group (specifically its risk management consulting arm) to help

plan how to climate-proof ports it operates (McAllister, 2024). “ ‘In the past decade, we have seen

coastal flooding at our terminal in Port Elizabeth, New Jersey; flooding at our Salalah terminal in

Oman; a cyclone hit our Pipavav terminal in India; and regular exposure to tropical windstorms to

our terminals in Miami, Florida, and Mobile, Alabama,’ says Lars Henneberg, VP, Head of Risk

Management at Maersk.” The Port of Long Beach enacted a Climate Adaptation and Resiliency

Plan as far back as 2016. This plan again highlights the risks posed by storm surges, sea level rise,

flooding, and heat waves (Port of Long Beach, 2016).

4 Welfare impacts

This section explores the welfare implications of my reduced form results through the lens of a

workhorse model of international trade. My gravity estimation results show that climate change

affects trade cost. To understand the welfare implications, note that my gravity results allow me to

estimate the change in ϕnit we would observe if we moved to the climate of a different period s ̸= t.

I can do this by plugging temperatures for that period Tis into the specification for the bilateral

resistance term (1) to obtain a counterfactual ϕ′
nit. Using hats to denote changes, the change in the

bilateral resistance term is

ϕ̂nit ≡ ϕ′
nit

ϕnit

(1)= d
δ1(Tis−Tit)+δ2(Tns−Tnt)
ni (3)
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Note that all non-temperature covariates remain constant — I simply estimate the change in bilateral

resistance stemming from the changed temperature variables.

To go from this change in bilateral resistance to an implied welfare impact, I need to specify a

model of international trade. This is necessary because I have to discipline how wages and prices

adjust under this counterfactual. I use the well-established model of Eaton and Kortum (2002) to

estimate the welfare change that would occur if the 2010s had instead had the climate of other

decades in my data. Under the Eaton and Kortum (2002) model, the bilateral resistance term is

equal to

ϕnit = τ−θ
nit

where τnit is a measure of how difficult it is to ship goods from i to n (not necessarily identical to

physical distance dni) and θ > 0 measures productivity dispersion in the Fréchet distribution of

technology underlying the Eaton and Kortum (2002) model.

The easiest way to estimate welfare impacts is to rewrite the model in changes (Dekle, Eaton, &

Kortum, 2008). The core object I need to estimate welfare impacts are trade shares πnit = Xnit/Xnt,

where Xnt ≡
∑N

i=1 Xnit is the destination country’s total expenditure for period t. The counterfactual

trade shares π′
nit resulting from a change τ̂nit ≡ τ ′

nit/τnit are

π′
nit = πnitT̂it(τ̂nitŵnit)−θ∑N

k=1 πktT̂nkt(τ̂nktŵnkt)−θ
(4)

Here, T̂it ≡ T ′
it/Tit is the change in country i’s productivity for period t (also from the Fréchet

distribution underlying technology) and ŵit is the change in country i’s wage for period t. The

resulting welfare change, letting π̂nit ≡ π′
nit/πnit denote the change in own trade share, is

Ŵit ≡ W ′
it

Wit
= T̂

1
θ

it π̂
− 1

θ
iit (5)

For now, I focus on the impact of climate change on trade cost only, keeping technology unchanged

(T̂it = 1). Then, the welfare change simply becomes the change in own trade share raised to a

negative power — if own trade share decreases, welfare increases.

It is straightforward to back out τ̂nit from the estimates of ϕ̂nit obtained in (3). I can then

solve the system of equations (4) for wage changes ŵit that equate counterfactual trade deficits and

surpluses with those observed in the data, ensuring goods market clearing in the counterfactual. The
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resulting counterfactual trade shares π′
nit enable me to calculate welfare changes for each country

from (5). Following Dekle et al. (2008), I set the only unknown parameter θ = 8.28.1

I use the 2010s as my reference period. Because this estimation requires domestic trade shares,

which the TRADHIST database lacks, I use the ITPD data on trade shares for the 2010s to measure

πnit. I then calculate welfare changes resulting from a shift to each previous decade’s climate. I do

this for all previous decades from the 1880s onwards, since I have global weather coverage beginning

at that time. Figure 10 shows the mean welfare change across decades, as well as the 5th and 95th

percentile of welfare changes. (Appendix Table 3 shows the same information in table form.)

Looking at the results for the 1910s, I estimate that the average country would see an 0.72

percent increase in welfare if we reverted trade cost increases due to climate change over the last

100 years. Especially given that the entire effect runs through trade network changes, rather than

through reduced productivity, this is a sizable effect. It is 26 to 28 percent, for example, of the

2.6 percent welfare decline due to climate change reducing agricultural productivity (Costinot

et al., 2016) or the 2.8 percent welfare decline due to overall productivity effects of climate change,

including on industrial production (Nath, 2020).

The impact tends to be larger when switching to earlier climates, since temperatures are

increasing over time and higher temperatures increase trade cost. Undoing those larger changes

by going to an earlier climate thus yields larger benefits. For example, the mean increase for the

earliest decade, the 1880s, is estimated to be 0.78 percent, whereas for the 1950s I estimate an

average welfare increase of 0.56 percent and for the most recent decade, the 2000s, I estimate an

0.14 percent welfare increase, on average. Across all decades, basically all countries see an increase

in welfare — the 5th percentile of welfare changes is consistently positive. At the 95th percentile,

welfare impacts are as high as 1.85 percent in the 1880s counterfactual.2

Figure 11 shows a map of welfare gains across countries for the 1910s counterfactual. There

is considerable heterogeneity in gains across space, with somewhat higher gains standing out in

southern Africa, northern Latin America, the Arabian Peninsula south-eastern Asia.

What determines who gains more or less from undoing the trade cost impact of climate change?

A core correlate of welfare changes, we might think, are climate trends. Figure 12 shows welfare
1 Solving the model also requires choosing a normalization. I fix world GDP at its 2010s value.
2 Appendix Figure 20 and Appendix Table 4 show versions of these results using population-weighted averages based

on countries’ 2010s population. As I discuss below, larger countries benefit less from trade cost reductions, so the
population weighted average welfare changes are somewhat lower. Appendix Figure 21 shows results across periods
using the fully interacted model presented in the second column of Table 1. Results are very similar to my main
specification.
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changes in the 1910s counterfactual across countries’ own temperature change between period the

1910s and the 2010s. Figure 13 shows welfare changes across the inverse distance weighted change

in other countries’ change in temperatures, which is calculated as

Inverse distance weighted changeit ≡ 1∑
n̸=i d2

ni

∑
n ̸=i

d2
ni∆Tnt

where ∆Tnt is country n’s change in temperature between period t and the 2010s. This measure

captures climate change in the rest of the world, weighted by how close that change is occurring. It

thus weights more attractive trade partners’ changes in temperatures more highly. Interestingly,

both measures of climate trends are only weakly correlated with welfare gains. If anything, the

correlation is negative. Simply looking at countries’ own climate trends, or those of their neighbors,

seems to have surprisingly little information content for predicting their welfare gains.

These temperature measures are, of course, correlated. Figure 14 highlights this, showing inverse

distance weighted temperature changes across countries’ change in own temperature between the

1910s and 2010s. That correlation could mask how own and others’ climate trends affect welfare

gains. To disentangle their effects, Table 2 shows results for regressions of welfare impacts Ŵit

across periods on country characteristics. These regressions include period fixed effects to analyze

correlates of welfare change within period. Standard errors are clustered at the country level. The

first column again highlights that, somewhat surprisingly, countries’ own temperature change is

essentially uncorrelated with welfare gains. The second column shows that inverse distance weighted

change is weakly negatively correlated with countries’ own welfare changes.

Column three, however, shows that once we take both changes into account, countries’ own

temperature changes are strongly positively correlated with welfare changes, while surrounding

countries’ temperature changes are strongly negatively correlated with welfare gains. That is,

conditional on countries’ own temperature changes, surrounding countries seeing more climate

change means lower welfare gains from reversing that climate change. This may seem counterintuitive,

but it makes sense. When country i and its neighbor j both see large temperature changes, they

both see rising trade cost and become less attractive trade hubs. Reversing that change benefits

both. When only j sees climate change, both countries still see an absolute increase in trade cost.

Country i, however, sees a reduction in relative trade cost — i’s cost of exporting and importing

falls relative to that of j. This relative cost reduction benefits i. Reversing climate change lowers

absolute trade cost for both countries, but increases i’s relative cost. That makes reversing climate
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change less beneficial for i when only j experiences climate change.

To understand the distribution of gains across countries, Figure 15 shows the estimated welfare

impacts of returning to the climate of the 1910s across countries’ 2010s log GDP. Larger economies

tend to benefit less from reversing the impact of climate change on trade cost. As Figure 16 shows,

however, welfare gains are essentially uncorrelated with GDP per capita. That is, rich and poor

countries alike are roughly equally affected by the trade cost impacts of climate change.

To understand why larger economies benefit less from trade cost reductions, the fourth column of

Table 2 shows a regression of welfare gains on log 2010s GDP, highlighting that across periods, GDP

and welfare gains are strongly negatively correlated. The fifth column adds controls for countries’

own temperature change between period t and the 2010s, as well as for the inverse distance weighted

change for all other countries. Since the coefficient on 2010s log GDP remains very similar, the

correlation between welfare gains and GDP is not due to the fact that larger economies face different

climate trends. As the last column of Table 2 shows, though, there is a straightforward explanation

for why smaller economies see larger welfare gains. That regression controls for countries’ 2010s

own trade share. As Figure 17 highlights, larger economies tend to have higher own trade shares

— they have larger domestic markets, and are less reliant on international trade. As soon as that

control is added to the regression, smaller economies no longer see larger welfare gains. (If anything,

conditional on their own trade share, larger economies are able to benefit more from trade cost

decreases.) As this shows, the reason that GDP and welfare gains are overall negatively correlated

is simply that smaller economies are more reliant on international trade. Reversing trade cost

increases from climate change is therefore especially valuable for smaller economies.

As mentioned above, the welfare gains are sizable — the average 1910s welfare gain of 0.72

percent is 26 to 28 percent of the welfare effects of climate change through productivity (Costinot

et al., 2016; Nath, 2020). A different way to assess the effect size is to calculate the combined

welfare effects of climate change through both trade cost and productivity. I can then compare the

combined welfare impact to the welfare effects of productivity changes alone. The difference shows

by how much we underestimate the welfare impacts of climate change when we ignore trade cost

effects and only focus on productivity.

To do this, I calibrate a counterfactual scenario that counters the 2.6 percent welfare impact of

climate change through productivity estimated in Costinot et al. (2016). That is, this counterfactual

raises average welfare by about 2.7 percent (≈ 1/(1 − 2.6%)). I calibrate this counterfactual by

picking a common change in technology T̂it = T̂t for all i which results in this targeted welfare gain,

13



again using (4) to solve for wage changes and calculating welfare changes from (5). I can then

compare the welfare gains from undoing the productivity effects and the trade cost effects of climate

change to the gains from undoing only the productivity effects.

Figure 18 shows average welfare gains across the trade cost, productivity, and combined counter-

factuals.3 I break these up by small (below median 2010s GDP) and large countries. While gains

from increased productivity alone are larger than gains from trade cost alone, welfare gains from

the combined counterfactual are also considerably larger than those from the productivity-only

counterfactual. This is especially true for smaller countries, which see a larger additional welfare

gain from the combined counterfactual. Overall, this shows that focusing on productivity alone

means I underestimate the welfare impacts of climate change.

To quantify how large the underestimate is, Figure 19 shows a histogram of the additional

welfare gain from the combined counterfactual compared to the productivity-only exercise. The

average country has a 28 percent larger welfare gain from also undoing trade cost changes. As

discussed above, the impact varies depending on countries’ trade openness as well as their exposure

to climate change.4 This simple exercise suggests that ignoring the impact of climate change on

trade cost leads to an underestimate of the welfare impact of climate change by 28 percent. That is

a sizable understatement, again highlighting that the trade cost channel I highlight matters.

5 Conclusion

I show that climate change pushes countries further apart by increasing the cost of trade. Using

an augmented gravity estimation, I show that decade-level average temperatures at the origin or

destination country increase bilateral trade cost. The welfare impacts of this are considerable. Using

the Eaton and Kortum (2002) model, I find that average welfare during the 2010s would have been

0.72 percent higher if climate change had not increased trade cost over the preceding 100 years.

Welfare gains depend not only on countries’ own climate trends, but also on their trends relative to

neighboring countries — when country i’s neighbors face more drastic climate change than i itself,

country i experiences a relative trade cost reduction. Reverting that change thus benefit i less,

since its relative position declines. Poor and rich countries benefit equally. Benefits are especially
3 Because the productivity exercise uses a common technology shifter, all countries see the same welfare impact

under the productivity change scenario.
4 Since I use a common technology shifter, this exercise misses the fact that countries with larger changes in trade

cost due to climate change would probably also see larger productivity impacts. That would lead to greater variance
in welfare changes.
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large for smaller economies, which are more reliant on international trade. A simple counterfactual

exercise shows that ignoring the trade cost channel I highlight leads to a 28 percent underestimate

of the welfare impact of climate change.

Since I only rely on an augmented gravity specification, the effect of climate change on trade

cost I demonstrate in this paper can easily be included in estimations of the impact of climate

change. This is especially true for estimations based on the broad class of trade models that allow

for gravity estimation to be solved separately from the rest of the model. I hope this will enrich our

analysis of the impact of climate change.
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Tables

Table 1: Gravity estimation results

Variable Basic model Full interaction Distance × decade Level Tct Weighted distance Benchmark

d̃ dm
ni −0.589

[0.000]
−0.590

[0.000]
−0.590

[0.000]
−0.649

[0.000]
−0.541

[0.000]

d̃ dm
ni Tit −0.041

[0.004]
−0.042

[0.006]
−0.047

[0.002]
−0.044

[0.002]
−0.045

[0.003]

d̃ dm
ni Tnt −0.038

[0.012]
−0.047

[0.003]
−0.046

[0.003]
−0.040

[0.008]
−0.038

[0.023]

Languageni × Tit 0.077
[0.024]

Languageni × Tnt 0.079
[0.030]

Contiguousni × Tit −0.040
[0.339]

Contiguousni × Tnt −0.116
[0.024]

Current colonynit × Tit −0.307
[0.162]

Current colonynit × Tnt −0.239
[0.303]

Ever colonyni × Tit 0.070
[0.333]

Ever colonyni × Tnt 0.152
[0.052]

Tit −0.659
[0.017]

Tnt −1.155
[0.000]

Cnit Yes Yes Yes Yes Yes Yes
Origin-decade FE Yes Yes Yes No Yes Yes
Destination-decade FE Yes Yes Yes No Yes Yes
d̃ dm

ni × decade No No Yes No No No
Origin FE No No No Yes No No
Destination FE No No No Yes No No
Decade FE No No No Yes No No
Origin time trend No No No Yes No No
Destination time trend No No No Yes No No
Observations 327,550 327,550 327,550 327,550 293,968 327,550
Clusters 28,993 28,993 28,993 28,993 22,118 28,993

Note: The outcome are decade-level average trade flows from country i to country n, winsorized at the 99th percentile. The estimation
uses pseudo-Poisson maximum likelihood (PPML) to accommodate zero trade flows. dni is the great circle distance between the
origin and destination countries in km. I subtract the log of the mean distance to center interaction terms at the mean distance,
d̃ dm

ni ≡ log(dni) − log(d̄ni). (Note that this does not change the estimated coefficient on distance or its interpretation, it simply
makes it easier to interpret estimates for interactions, since those now reflect the effect size when all variables involved are at their
respective means.) Tc is the z-score of the yearly mean temperature in country c at time t in ◦C. Cnit contains a common language
indicator, contiguity indicator and two indicators for current and past colonial relationships, taking decade means for all variables
within each origin-destination pair. Decades t are the decades from 1820 to 2020. Distance × decade allows the effect of distance
to vary over time by interacting distance with decade indicators. Weighted distance uses population-weighted great circle distance
instead of the unweighted measure. This is missing for countries which no longer exist, so the observation count is lower. Standard
errors clustered by country pair, p-values in brackets.
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Table 2: Correlates of welfare changes

Variable Ŵit Ŵit Ŵit Ŵit Ŵit Ŵit

Log 2010s GDP −0.058
[0.000]

−0.060
[0.000]

0.037
[0.000]

Own change 0.012
[0.897]

0.443
[0.008]

0.463
[0.001]

Inverse distance weighted change −0.156
[0.165]

−0.645
[0.002]

−0.473
[0.004]

2010s own trade share (%) −0.015
[0.000]

Decade FE Yes Yes Yes Yes Yes Yes
Note: The outcome Ŵit is the welfare change for country i under decade t’s climate counterfactual. Own change is each country’s
own change in temperature between each decade and the 2010s, whereas the inverse distance weighted change for country i is the
average change in all other countries’ temperatures, weighted by the inverse of their squared distance to i. Standard errors clustered
by country, p-values in brackets.
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Figures

Figure 1: Trade data country counts by year

Note: The figure shows the number of countries observed in the TRADHIST trade data by year. I subset to observations with
non-missing trade flows and distance information.
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Figure 2: Trade flow counts by year

Note: The figure shows the number of trade flows observed in the TRADHIST trade data by year. I subset to observations with
non-missing trade flows and distance information.

Figure 3: Unmatched trade flows (percent) by year

Note: The figure shows the percent of TRADHIST trade observations which cannot be matched to weather information by year. I
subset to observations with non-missing trade flows and distance information.
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Figure 4: Weather observation counts for current countries by year

Note: The figure shows the number of countries with non-missing weather observations by year. I subset to countries which currently
exist and ever appear in the TRADHIST trade data. (For example, in this plot, I include Germany, which currently exists and
appears in the trade data, but not the former West and East Germany, which do appear in the trade data but no longer exist.) The
number of countries in the sample therefore does not change over time.
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Figure 5: Average temperature (◦C) by year

Note: The figure shows the average temperature across years. The figure starts in 1880, where I have global weather coverage. I subset
to countries which currently exist and ever appear in the TRADHIST trade data. (For example, in this plot, I include Germany,
which currently exists and appears in the trade data, but not the former West and East Germany, which do appear in the trade
data but no longer exist.) The number of countries in the sample therefore does not change over time. Gray bands show 95 percent
confidence intervals for the yearly means.
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Figure 6: Coefficients on log distance across decades (only distance effect varies over time)

Note: Results are from a gravity estimation for decade-level average trade flows between countries, estimated via Poisson pseudo-
maximum likelihood to deal with zero flows. Coefficients are for distance between origin-destination pairs interacted with decade
indicators. Vertical lines and whiskers indicate 95 percent confidence intervals. Other coefficients in the model, including those on
origin and destination temperature, do not vary across decades.

Figure 7: Coefficients on temperature times log distance across decades (distance effect also varies
over time)

Note: Results are from a gravity estimation for decade-level average trade flows between countries, estimated via Poisson pseudo-
maximum likelihood to deal with zero flows. Coefficients are for temperature (in ◦C) at the origin and destination country. Vertical
lines and whiskers indicate 95 percent confidence intervals. The effect of log bilateral distance on trade flows is also allowed to vary
by decade.
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Figure 8: Coefficients on log distance across decades (temperature effect also varies over time)

Note: Results are from a gravity estimation for decade-level average trade flows between countries, estimated via Poisson pseudo-
maximum likelihood to deal with zero flows. Coefficients are for distance between origin-destination pairs interacted with decade
indicators. Vertical lines and whiskers indicate 95 percent confidence intervals. The effect of origin and destination temperatures on
trade flows is also allowed to vary by decade.

Figure 9: Coefficients on log distance across decades (benchmark excluding temperature variables)

Note: Results are from a gravity estimation for decade-level average trade flows between countries, estimated via Poisson pseudo-
maximum likelihood to deal with zero flows. Coefficients are for distance between origin-destination pairs interacted with decade
indicators. Vertical lines and whiskers indicate 95 percent confidence intervals. Other coefficients in the model do not vary across
decades. This benchmark specification does not include origin and destination temperatures.
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Figure 10: Summary statistics for welfare change (percent) across decades

Figure 11: Welfare change (percent) in 1910s climate counterfactual across countries
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Figure 12: Welfare change (percent) in 1910s climate counterfactual across change in own temperature
between the 1910s and 2010s

Note: Change in own temperature is the change in country i’s own temperature between the 1910s and 2010s. The solid line shows a
linear fit.
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Figure 13: Welfare change (percent) in 1910s climate counterfactual across inverse distance weighted
change in other countries’ temperature between the 1910s and 2010s

Note: The inverse distance weighted change for country i is the average change in all other countries’ temperatures, weighted by the
inverse of their squared distance to i. The solid line shows a linear fit.
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Figure 14: Inverse distance weighted change in other countries’ temperature between the 1910s and
2010s across change in own temperature between the 1910s and 2010s

Note: The inverse distance weighted change for country i is the average change in all other countries’ temperatures, weighted by the
inverse of their squared distance to i. The solid line shows a linear fit.
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Figure 15: Welfare change (percent) in 1910s climate counterfactual across 2010s GDP

Note: The solid line shows a linear fit.

Figure 16: Welfare change (percent) in 1910s climate counterfactual across 2010s GDP per capita

Note: The solid line shows a linear fit.
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Figure 17: 2010s own trade share across 2010s GDP

Note: The solid line shows a linear fit.
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Figure 18: Welfare gains (percent) across different scenarios for 1910s climate counterfactual

Note: The figure shows average welfare gains under each scenario. Trade cost undoes the impact of climate change on trade cost.
Productivity calibrates a common technology shift that undoes the 2.6 percent welfare decline due to climate change from Costinot,
Donaldson, and Smith (2016). Combined implements both changes at the same time. All countries shows the average for all countries
in the data. Small countries shows the average for countries with below median 2010s GDP. Large countries shows the average for
countries with above median 2010s GDP.
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Figure 19: Additional welfare gains from combined trade cost and productivity change vs. produc-
tivity change alone for 1910s climate counterfactual

Note: The welfare gain ratio is the welfare gain from undoing climate change impacts on both productivity and trade networks
compared to only undoing its impact on productivity. A welfare gain ratio of 20 percent, for example, means that welfare gains from
undoing both effects lead to a 20 percent larger welfare gain than only undoing productivity effects. The dashed line indicates the
mean welfare gain ratio.
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Table
3:

W
elfare

change
(percent)

across
decades

Statistic
1880s

1890s
1900s

1910s
1920s

1930s
1940s

1950s
1960s

1970s
1980s

1990s
2000s

M
ean

0.767
0.737

0.731
0.706

0.635
0.576

0.527
0.543

0.541
0.528

0.426
0.273

0.122
p5

0.176
0.185

0.179
0.179

0.157
0.150

0.125
0.130

0.131
0.121

0.099
0.062

0.014
p10

0.246
0.228

0.234
0.225

0.194
0.179

0.161
0.168

0.184
0.164

0.129
0.078

0.024
p25

0.388
0.364

0.369
0.345

0.322
0.257

0.279
0.273

0.275
0.266

0.224
0.138

0.046
p50

0.582
0.569

0.564
0.518

0.471
0.419

0.410
0.415

0.422
0.392

0.319
0.205

0.088
p75

1.063
1.058

1.081
1.094

0.968
0.832

0.743
0.747

0.761
0.737

0.574
0.369

0.170
p90

1.587
1.530

1.494
1.481

1.316
1.213

1.020
1.100

1.085
1.051

0.843
0.543

0.274
p95

1.818
1.636

1.692
1.623

1.489
1.353

1.171
1.257

1.245
1.262

0.976
0.655

0.334
N

ote:
T

he
table

sum
m

arizes
the

estim
ated

p
ercent

change
in

w
elfare

under
clim

ate
change

counterfactuals
for

each
decade.

M
ean

rep
orts

the
average

w
elfare

change
for

each
decade,

w
hile

p
x

rep
orts

the
x

th
p

ercentile
of

w
elfare

changes
for

each
decade.
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Table
4:

Population-w
eighted

sum
m

ary
statistics

for
w

elfare
change

(percent)
across

decades

Statistic
1880s

1890s
1900s

1910s
1920s

1930s
1940s

1950s
1960s

1970s
1980s

1990s
2000s

M
ean

0.425
0.402

0.393
0.389

0.347
0.324

0.294
0.295

0.292
0.286

0.232
0.150

0.066
p5

0.128
0.108

0.104
0.112

0.097
0.096

0.084
0.081

0.084
0.081

0.062
0.048

0.016
p10

0.128
0.108

0.104
0.112

0.097
0.097

0.084
0.081

0.084
0.081

0.062
0.050

0.016
p25

0.158
0.143

0.144
0.129

0.114
0.097

0.096
0.108

0.106
0.100

0.076
0.051

0.017
p50

0.246
0.232

0.235
0.230

0.201
0.199

0.165
0.177

0.172
0.163

0.143
0.078

0.025
p75

0.535
0.504

0.514
0.456

0.425
0.386

0.364
0.396

0.395
0.369

0.292
0.187

0.083
p90

0.953
0.903

0.818
0.784

0.674
0.683

0.592
0.655

0.612
0.621

0.474
0.324

0.163
p95

1.507
1.389

1.404
1.321

1.181
1.133

1.007
1.040

0.950
1.007

0.814
0.473

0.253
N

ote:
T

he
table

sum
m

arizes
the

estim
ated

p
ercent

change
in

w
elfare

under
clim

ate
change

counterfactuals
for

each
decade.

M
ean

rep
orts

the
average

w
elfare

change
for

each
decade,

w
hile

p
x

rep
orts

the
x

th
p

ercentile
of

w
elfare

changes
for

each
decade.

T
he

m
ean

and
p

ercentiles
use

2010s
p

opulation
as

w
eights.
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Appendix B Additional figures

Figure 20: Population-weighted summary statistics for welfare change (percent) across decades

Note: The mean and percentiles use 2010s population as weights.
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Figure 21: Welfare change (percent) across decades using fully interacted specification

Note: These results are based on the fully interacted specification found in the second column of Table 1, allowing the impacts of
temperature to vary by additional bilateral covariates beyond distance.
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