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Abstract

Climate change and extreme weather events are a global problem but especially affect poor
countries. The effect on agriculture is well studied, but we know less about non-agricultural
firms. I combine firm-level data from sub-Saharan Africa and South Asia with high-resolution
weather data to study how non-agricultural firms in poor countries react to weather shocks. I
show that weather shocks reduce firms’ labor productivity, and that firms react by scaling back
complementary expenditures on items like rented machinery, rented space and sales personnel.
This makes firms even less productive. To assess policy implications, I develop a structural
model including this mechanism. I combine it with machine learning estimates of the impact of
climate change to discipline climate change counterfactuals. Counterfactuals show that these
firm reactions make (i) policies benefiting mostly larger firms and (ii) policies improving firm
adaptation to climate change especially effective at countering welfare losses from climate change.
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Climate change and extreme weather events are a global problem but especially affect poor

countries. There is an extensive literature on the effects of extreme weather on agricultural

production in poor countries. We know relatively little, however, about the effects of weather shocks

on non-agricultural firms in these countries. We do know that weather affects non-agricultural firms,

with extreme temperatures decreasing their sales. We further know that this effect can operate both

through a demand channel, by reducing local demand, and through a supply channel, by decreasing

firm productivity (Adhvaryu, Kala, & Nyshadham, 2019; Costinot, Donaldson, & Smith, 2016; Nath,

2020; Santangelo, 2019; Somanathan, Somanathan, Sudarshan, & Tewari, 2021; Zhang, Dêschenes,

Meng, & Zhang, 2018). We do not yet, however, have a good understanding of firm reactions to

these shocks (Goicoechea & Lang, 2023). Understanding firm reactions, and how we can leverage

these reactions in policy design, could significantly improve our ability to help poor countries cope

with the impact of climate change.

I show that firms react to weather shocks by adjusting their productive capability — expenditures

on items like rented machinery, rented space and non-production personnel — and that these reactions

are quantitatively important for policy design. My argument proceeds in five steps. First, I assemble

a data set combining World Bank Enterprise Surveys across sub-Saharan Africa and South Asia with

high-resolution weather data. I test whether weather shocks are predominantly supply or demand

shocks. This is a necessary first step for understanding firm reactions, since firms would react to

both types of shocks differently. The test I use is based on a basic open economy intuition about

exporters: They are somewhat insulated from local demand shocks. They are, however, less able to

pass on marginal cost increases to their international buyers. Therefore, they are more exposed

to supply shocks. I construct a temperature index combining mean temperature, temperature

variance, and the number of days with temperatures exceeding 32◦C (89.6◦F). I regress log sales on

this temperature index fully interacted with exporter status, using location fixed effects to isolate

random year-to-year weather variation. I find that negative weather shocks have a significantly

larger impact on exporters’ total sales than on non-exporters’ total sales: An 80th percentile weather

shock decreases non-exporters’ total sales by 3.9 percent, but exporters’ total sales by 6.9 percent.

For comparison, these effect sizes are similar to the effects of ethnic conflict on Kenyan flower

packers’ or mobile phone access on Indian fishers’ output, for example (Hjort, 2014; Jensen, 2007).

The key takeaway is that exporters are more affected by extreme weather. This implies that weather

is, on net, a supply shock for these firms, rather than a local demand shock.

Second, I turn to firm reactions to the shock. Interestingly, I find that exporters also see a larger
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impact of weather shocks on domestic sales. This suggests that a firm’s performance in one market

affects its performance in other markets. The key question is, where does this link of sales across

markets come from?

I argue that it is due to a key firm reaction to the shock: adjusting spending on productive

capability. Productive capability comprises rented or hired equipment, space and non-production

personnel. For example, it includes rented machinery, rented office space or a sales team. Productive

capability improves overall performance across all markets a firm is active in. It does this by making

labor more productive (providing workers with sufficient equipment or space) or by making it easier

to sell the firm’s output. Productive capability thus lowers the cost of providing the firm’s products

across all markets the firm serves. Faced with higher temperatures, firms scale back expenditures on

productive capability, since these kinds of productivity-enhancing expenditures are complementary to

firm productivity. Due to the rich survey data I use, I can measure productive capability expenditures

in the data. They combine the cost of communications, sales (including sales staff), transportation,

and rent for buildings, equipment and land. I see productive capability reactions to weather shocks

in the data: In response to an 80th percentile weather shock, domestic producers reduce their

expenditure on productive capability by 2.9 percent, while exporters reduce their expenditure by

6.7 percent. A mediation analysis further shows that controlling for productive capability removes

the differential impact on exporters’ domestic sales. This provides strong evidence that productive

capability is causing the market linkage. I also run a battery of robustness checks showing that

the differential impact on exporters’ domestic sales is not due to well-known differences between

exporter and non-exporters, such as the sectors they are active in, firm size, or the complexity of

their production process.

Third, based on these reduced form results and adapting the basic framework of Hyun and

Kim (2022), I develop an international trade model that adds this productive capability adjustment

channel to the model of Melitz (2003). I adapt and extend Hyun and Kim (2022) to an international

trade setting, include market entry and exit, and estimate the resulting model. The model generates

the patterns I observe in the data: In reaction to a negative productivity shock, firms scale back

productive capability expenditures. This makes them even less productive and therefore reduces

their sales across all markets they are active in. The effect is larger for exporters, because exporters

may no longer find it profitable to trade with some of their export destinations. When they exit

those markets, they see a discontinuous fall in total sales and productive capability. This, in turn,

leads to a discontinuous fall in sales to the domestic market. Adding productive capability makes

2



the model computationally more challenging, since firms’ decisions to enter various markets are no

longer independent: If a firm enters a new market, the additional demand it can now reach makes it

worthwhile to hire additional productive capability, which in turn can make it profitable to enter

additional markets. I develop a novel algorithm for solving this high-dimensional combinatorial

problem in my setting. While the model remains computationally more burdensome than a standard

Melitz (2003) model, I show that it can be readily estimated using novel small open economy

methods (Bartelme, Lan, & Levchenko, 2023; Demidova, Naito, & Rodríguez-Clare, 2022). I use

Zambia as a small open economy, and am able to estimate large parts of the model using reduced

form approaches, which reduces the complexity of the estimation considerably without sacrificing

key insights from the model. I find that the estimated model matches targeted and non-targeted

moments well.

Fourth, I then turn to estimating the causal effect of climate change, based on an array of

high-resolution weather projections covering a range of climate change scenarios. I cannot simply

extrapolate reduced form estimates using the temperature index to assess the impact of climate

change. Those estimates used a parsimonious, simple functional form suited to understanding

the impacts of weather shocks. To extrapolate to a different climate, however, I need to correctly

estimate the complex relationship between many different weather variables and firm outcomes. I

also need the estimator to perform well out of sample, since climate change is inherently something

that happens in the future. Finally, I need to capture firm adaptation to climate change in my

estimates. I use the causal forest algorithm (Athey, Tibshirani, & Wager, 2019), which is especially

well suited to this estimation. An important feature of causal forests is that they perform well

even with a large selection of right hand side variables. Causal forests are also optimized for out

of sample performance. Finally, I can easily incorporate adaptation to climate change into the

estimation by including long-term means and variances of all weather measures. This allows firm

reactions to weather shocks to differ based on their climatic environment. I estimate the impact of

climate change on firm sales under three different climate change scenarios, using predictions from

27 different climate models for each scenario. Under a severe climate change scenario, I estimate

that the average firm faces an almost eleven percent decrease in sales by the late 2080s. Even under

a mild scenario, I find that the average firm’s sales would drop by over six percent.

Finally, I combine these projections with the model to demonstrate that productive capability

reactions matter for policy effectiveness. I use the causal forest estimates to calibrate a counterfactual

baseline scenario under climate change. The calibration shifts firm productivities to match the
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estimated climate change impact on the average firm. I conduct policy experiments based on this

scenario, comparing my model’s results to a modified version which shuts down firms’ productive

capability reactions. I demonstrate two policy implications of productive capability reactions. First,

policies mostly benefiting larger firms are especially effective at counteracting the impacts of climate

change. A reduction in variable trade costs, which benefits existing exporters, becomes 1.5 times

more effective at reducing the impact of climate change. This is because reduced trade cost allows

larger firms to hire additional productive capability, combating some of the productivity losses from

climate change. The overall welfare gains and gains to large firms come at the expense of smaller

producers, however. Second, adaptation to climate change becomes more effective. Adaptation

restores some of the productivity losses from climate change. Firms react by increasing productive

capability expenditures, further reducing the productivity losses.

I contribute to the literature on the impact of climate change on poor countries, especially its

impact on firms and trade (e.g., Castro-Vincenzi, 2024; Conte, 2022; Costinot et al., 2016; Nath,

2020; Santangelo, 2019; Somanathan et al., 2021; Zhang et al., 2018); see Goicoechea and Lang

(2023) for a recent summary. I add two important stylized facts to this literature, namely that

weather is, on net, a supply rather than a demand shock, and that non-agricultural firms in poor

countries react to weather shocks by adjusting their productive capability. I build and estimate a

trade model incorporating this mechanism. While existing studies often focus on shifting patterns of

comparative advantage and differences across sectors, or on relatively sophisticated multinationals,

I focus on a very general adjustment mechanism at the firm level. Finally, I demonstrate that

productive capability reactions make (i) policies benefiting mostly larger firms and (ii) policies

allowing firms to adapt to climate change especially effective at countering the negative impacts of

climate change, compared to a model that ignores these reactions.

I further contribute to the broader literature on estimating the effects of weather shocks and

climate change (e.g., Auffhammer, Hsiang, Schlenker, & Sobel, 2013; Burke & Emerick, 2016; Burke,

Hsiang, & Miguel, 2015; Burke & Tanutama, 2019; Carleton & Hsiang, 2016; Carleton et al., 2022;

Castro-Vincenzi, 2024; Dell, Jones, & Olken, 2012; Deschênes & Greenstone, 2007, 2011; Lin,

Schmid, & Weisbach, 2019; Nath, 2020; Ortiz-Bobea, 2021; Somanathan et al., 2021; Zhang et al.,

2018). Here, I use a novel approach to estimation using causal forests (Athey et al., 2019). Weather

data are very high dimensional, and estimating the impact of climate change is inherently an out of

sample exercise. Existing approaches, for example using linear regression, often require researchers

to pick only a few weather measures in their analysis to keep the estimation feasible or to achieve
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reasonable out of sample performance. CFs, on the other hand, are especially well-suited to the

problem, since they can easily handle high-dimensional weather data and are optimized for out of

sample performance.

The closest paper to mine is Nath (2020), who shows that under climate change, labor is drawn

into agriculture, because countries need to grow sufficient food to feed their population. Since

climate change especially reduces agricultural productivity, this labor reallocation increases welfare

losses. Reduced trade costs allow countries to import more food, reduces the labor reallocation and

decreases damages from climate change. Relative to Nath (2020), I focus on firm-level reactions to

extreme weather, rather than aggregate reallocations across sectors. Accordingly, I use a model

of firm-based trade to study the impacts of climate change, instead of a Ricardian model driven

by comparative advantage. Finally, I use causal forests to estimate the effects of climate change,

which I argue are especially well-suited to this task. Another related paper is Castro-Vincenzi

(2024), who shows that climate risk leads car producers to open smaller factories with spare capacity,

leading to less efficient production and higher consumer prices. The mechanism I study is relevant

even for single-establishment firms and across sectors, complementing this existing evidence on the

importance of location choice for multinationals.

The rest of the paper is organized as follows: Section 1 describes the data I use. Section 2

presents reduced form evidence. Section 3 develops an international trade model. Section 4 estimates

the causal impact of climate change on firms. Section 5 presents counterfactual simulations showing

how productive capability reactions change the effectiveness of different policy instruments under

climate change. Section 6 summarizes my main findings and concludes.

1 Data

This section describes the different data sets I use throughout the paper. My analyses focus on

non-agricultural firms across sub-Saharan Africa and South Asia, and this guided my selection of

data sets. I focus on these two regions for two reasons. First, they contain the countries on Earth

with the highest fraction of people living in absolute poverty and the largest number of people

living in absolute poverty. At the same time, climate change stands to be especially damaging

to these regions (Costinot et al., 2016). Understanding how economies across these regions can

cope with climate change is therefore especially important for global poverty reduction efforts over

the next century. Second, my main argument is most relevant to countries with relatively small
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domestic markets compared to world markets — relatively poor countries. Many of these small

open economies are located across sub-Saharan Africa and South Asia.

1.1 Firm data: World Bank Enterprise Surveys

For data on firm outcomes and characteristics I use the World Bank Enterprise Surveys (ES).1

Specifically, I use the harmonized data set provided by the World Bank, comprised of surveys

between 2006 and 2020. The Enterprise Surveys data include formal companies with at least five

employees in the manufacturing and service sectors. The surveys contain firm data for the last

complete fiscal years. All surveys contain weights to make them representative of each country-year’s

non-agricultural firms, and all estimations and summary statistics in this paper use those weights.

Table 1 shows basic summary statistics for firms across sub-Saharan Africa and South Asia.

There is a lot of heterogeneity, with firm sizes ranging from six employees at the 25th percentile to

22 at the 75th percentile. There is also a noticeable right tail of large firms, with the average number

of employees, 23, exceeding even the 75th percentile. (This is despite winsorizing the data at the

95th percentile to ensure means are not overly skewed by the largest firms.) The sales distribution

is similarly skewed, with median sales of ≈USD 100,000, but average sales of ≈USD 800,000. 12

percent of firms are exporters and 31 percent are in manufacturing. The overall takeaway is that I

observe a wide range of firms, including some very large firms, offering a representative overview of

non-agricultural formal sector economic activity. Figure 1 shows the locations of all firms across

sub-Saharan Africa and South Asia. The key takeway here is that the Enterprise Surveys have very

wide geographic coverage. This is useful for studying the overall implications of climate change,

since weather and climate change vary across space.2

To match firm and weather data, I require firm locations as lat/lon coordinates and the dates

when the last fiscal year began and ended. The exact dates for when that fiscal year started and

ended are sometimes missing, but I obtained meta data from the World Bank that allow me to

fill in missing fiscal year dates. I also obtained location data from the Enterprise Surveys unit

in the World Bank. For firms that lack location data, I use information on the city, state and

country the firm is located in to geocode the firm’s location, using three different web services

(OpenStreetMap, GeoNames and Google Maps) accessible via Python. This fails for some location

names which cannot be retrieved by any of the location services. Overall, 52 percent of my sample
1 More information on the Enterprise Surveys data is available at https://www.enterprisesurveys.org/
2 Appendix Table 12 shows the number of firms observed by country, as well as the number of firms with non-missing

real sales and location information.
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has non-missing location data. Of these, 86 percent have near-exact location data provided by the

World Bank, and the remainder have location data found via web search.

1.2 Weather data: CHIRPS and Berkeley Earth

The weather variables used in most previous studies of the impact of weather shocks or climate

change are temperature and precipitation (Carleton & Hsiang, 2016). I, too, use data on both

temperature and precipitation, as needed for any given analysis. I obtain precipitation data from

the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data set (Funk et al.,

2015).3 CHIRPS is a global, daily, high spatial resolution (0.05◦ grid) precipitation data set going

back to 1981. I obtain daily maximum temperature data from the Berkeley Earth (BKE) data set

(Rohde et al., 2013).4 These data are at a somewhat lower spatial resolution (1◦ grid) but cover

recent years, which is important since my most recent data points come from 2020. Figure 2 shows

daily maximum temperature on April 24, 1991, to illustrate the resolution of the temperature data.

Precipitation data, as discussed above, are at an even higher resolution.

The firm locations provided by the World Bank are slightly randomly offset from the actual

firm location to preserve data confidentiality. It therefore happens in some cases that firm locations

are over the water, where CHIRPS and BKE do not cover them. For these cases, I use weather

data for the closest firm that does not have this problem.

1.3 Climate projections: NEX-GDDP-CMIP6

I obtain projections for future weather (weather drawn from a changed climate) from the NEX-

GDDP-CMIP6 data set (Thrasher, Wang, Michaelis, Melton, Lee, & Nemani, 2022; Thrasher, Wang,

Michaelis, & Nemani, 2021). These are results of climate model runs that are part of Coupled Model

Intercomparison Project Phase 6 (CMIP6), downscaled to a higher resolution and bias corrected by

the NASA Center for Climate Simulation. The data contain daily projections for temperature and

precipitation, though I do not need them to accurately project temperature on any given day; I just

need them to produce reasonable projections of expected weather patterns in future years.

I use projections for three different climate change scenarios; these scenarios are called Shared

Socioeconomic Pathways (SSPs). Each SSP describes a different path for future climate change based

on different assumptions about greenhouse gas emissions, population and international cooperation.
3 More information on CHIRPS is available at https://www.chc.ucsb.edu/data/chirps
4 More information on BKE is available at https://berkeleyearth.org/data/
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The three different scenarios I consider, which are the most commonly used SSPs, are SSP1/2.6,

which is a very optimistic scenario featuring climate change mitigation and sustainable development,

SSP2/4.5, which is a middle of the road scenario featuring some mitigation, and SSP5/8.5, which

features the most rapid climatic change.5 Studying results for different SSPs allows me to incorporate

deep uncertainty about the broad parameters governning the future path of climate change.

Beyond this deep uncertainty, the NEX-GDDP-CMIP6 data contain results for 27 different

climate models for each SSP that feature temperature and precipitation variables comparable to

those from CHIRPS and BKE. These 27 different models reflect uncertainty about modeling climate

even for a given broad climate trajectory. I combine all of these different models when projecting the

causal impact of climate change in Section 4. My results therefore incorporate modeling uncertainty

about future weather as well. See Appendix C for more detail on data processing for the weather

projections.

Figure 3 shows the trajectory of yearly average daily maximum temperature in the actual data

and across SSPs (taking the average across all models within SSP). Starting in 2040, the differences

between the three scenarios become apparent, with temperature rising fastest in SSP5/8.5, and

plateauing (in fact slightly decreasing towards the end of the century) in SSP1/2.6.

1.4 Trade data

For international trade flows, I use the International Trade and Production Database for Estimation

(ITPD-E). ITPD-E covers inter- and intranational trade across all sectors of the economy. It is

designed to be used for the estimation of international trade models, especially gravity frameworks

(Borchert, Larch, Shikher, & Yotov, 2021). ITPD-E is especially useful for me since it covers a broad

range of countries, specifically across sub-Saharan Africa and South Asia, which other comparable

databases do not always contain.

2 Motivating reduced-form evidence

This section documents two new stylized facts. First, weather shocks are primarily a supply shock,

rather than a demand shock. Second, firms’ sales across different markets are linked, and the link is

due to spending on productive capability, such as machinery, office space, or a sales team. These

stylized facts are the key motivation for my modeling choices in Section 3.
5 See O’Neill et al. (2017) and Riahi et al. (2017) for more detail on the SSPs.
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2.1 Identification

I estimate regressions of the form

yjt = β1xjt + γn(j) + δt + εjt

where yjt is an outcome for firm j at location n(j) at time t and xjt is a measure of weather at the

firm’s location over the preceding fiscal year. I include location fixed effects γn(j) for identification,

as explained below, and year fixed effects δt purely to gain precision in my estimates. To explore

heterogeneity, I interact weather with firm characteristics zjt,

yjt = β1xjt + xjtz′
jtβ2 + z′

jtβ3 + γn(j) + δt + εjt

The key challenge to identification is that more or less productive firms could be more likely to be

located in places with specific climates, such as hotter or colder places (e.g., Burke & Emerick, 2016).

To overcome this threat, firm or location fixed effects can be used. These isolate random year-to-year

variation in weather variables. I do not have panel data on firms, so I group firms into clusters

based on geographic proximity. I then average weather variables within each cluster-fiscal year

combination. Conditional on cluster fixed effects, there is now no correlation between unobserved

firm characteristics and weather shocks — all firms in the same cluster at the same time receive the

same weather shock.

An additional econometric challenge is correlation of errors across space, an issue raised for the

historical persistence literature in Kelly (2020). Fortunately, I use variation over time rather than

just cross-sectional variation across space. By choosing an appropriate clustering distance, I can

ensure that errors are correlated within, but not across clusters. As a result, clustered errors are

sufficient for correct inference.

I group firms into clusters using the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm, which I implement using the Python package scikit-learn (Pedregosa

et al., 2011). This algorithm takes a distance parameter to determine core groups of firms that are

located close to each other, and in a second step adds periphery firms to a cluster if they are close

enough to a set of core firms. The core trade-off here is that large clusters introduce measurement

error due to the averaging of weather variables. Small clusters, on the other hand, leave more firms

out of any cluster altogether because they are not close enough to any other firms, dropping them
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from the analysis.

My preferred clustering distance is ten kilometers, since the fraction of firms included in

any cluster plateaus at this distance, while the distance is still relatively small. Therefore, the

measurement error induced by clustering at this distance should likewise be small. I also cannot

reject the null that errors at this clustering distance are uncorrelated across clusters. See Appendix

Table 13 for a formal test of error correlation at various clustering distances, as well as the fraction

of firms with non-missing location information included in any cluster.

To provide motivating evidence, I use a weather measure xjt that is parsimonious, easy to

understand and captures weather over the entire year: an index of three commonly used temperature

variables. The index combines (i) average temperature over the year, (ii) variance of temperature

over the year and (iii) the number of days with temperatures exceeding 32◦C (89.6◦F). These are

three different measures of how hot a year is, and each have their own strengths and weaknesses.

Combining them into a single index provides a parsimonious combined measures of temperature. To

make the index components comparable, I calculate location-specific z-scores for each of the three

components xjt as

x̃jt = xjt − x̄jt√
V̂ (xjt)

where x̄jt is the average of the variable at firm j’s location over the last 20 years and
√
V̂ (xjt) is

the corresponding standard deviation.6 The index is then just the average of the three z-scores.

To make the effect size more interpretable, I scale the index by its standard deviation across

locations after partialling out cluster fixed effects. I use the standard deviation after removing fixed

effects since that is the identifying variation the regressions use. This does not affect significance

of any of the estimates, it simply is a first step to making results more interpretable. A one unit

increase in the re-scaled index now corresponds to a one standard deviation weather shock.

Figure 4 shows a histogram of the resulting standardized index after partialling out fixed effects.

The figure also indicates the 20th and 80th percentiles of the variable. A one standard deviation

weather shock in either direction is quite large — most shocks are smaller in absolute magnitude

than this. To give a sense of scale, I convert the one standard deviation effect sizes into 80th

percentile weather shocks, or 0.320 standard deviations, in the following discussion.
6 Another advantage of the location-specific de-meaning is that, since my estimations include cluster fixed effects, I

now effectively use deviations of location-specific shocks from a linear growth trend to identify the effects of weather
shocks on firms, rather than relying purely on the randomness of weather shocks.
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For these estimations, I am interested in the effect of weather over the year on firm outcomes. I

do not, here, want to separate the impact of precipitation and temperature, for example. A higher

temperature index serves as an indicator of generally unfavorable weather conditions. For this

reason, I do not control for other weather variables in these estimations.

2.2 Results

This section presents reduced form estimation results.

2.2.1 Overall effect of weather on firms

Table 2 shows the effect of weather on firms’ log total sales. An 80th percentile weather shock leads

to a 7.1 percent decline in total sales. This is statistically different from zero at the ten percent level,

and an economically meaningful impact. Appendix Table 14 contains a version of this regression

including a one year lead of the temperature index. Results show that the lead does not have a

significant effect on contemporary outcomes. This suggests that firms do not perfectly anticipate

future weather shocks. That is consistent identifying assumption that contemporary weather shocks

are as good as random.

2.2.2 Weather is a supply shock

To understand firm reactions, I first need to test whether weather is, on net, a demand or supply

shock. This is required since firm reactions to either kind of shock could differ markedly. We know

that weather shocks affect local demand (Santangelo, 2019), but we also have evidence that they

affect firms’ marginal cost (Nath, 2020; Somanathan et al., 2021; Zhang et al., 2018). The question

I want to answer is, does one of the two dominate?

I do this by checking whether exporters see a larger or smaller effect of weather shocks on total

sales. If weather is predominantly a demand shock, then exporters should be less affected by it, since

they have access to a foreign source of demand that is insulated from the local shock. If weather is

predominantly a supply shock, on the other hand, they should see a larger effect. This is because

in the domestic market, firms can pass on some of the marginal cost increase to local consumers.

Internationally, however, it is harder to pass on cost increases. This could be, for example, because

competition is tougher.7

7 One might think that in a monopolistic competition model such as Melitz (2003), pass-through is the same in all
markets. Even in that model, however, exporters will respond to a negative productivity shock by reducing total
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Table 3 shows that purely domestic firms see a 4.0 percent decline in total sales in response

to an 80th percentile weather shock, while currently exporting firms see a 7.0 percent decrease,

with the difference significant at the one percent level. Appendix A.5 shows that this exporter

interaction is not sensitive to using alternative ways of measuring exporter status (for example,

using past exporter status instead of current exporter status). The estimate of the base effect for

domestic producers is somewhat noisy, but as Section 4 shows, using estimation methods that can

fully capture the complexity of weather data, I do estimate a significant overall effect of weather on

firm performance.8 The key takeaway is that the supply effect of weather shocks outweighs their

demand effect. I do not take a stance on the exact channel through which weather affects firm

productivity, but Appendix C.1 lays out several well-documented channels as well as supporting

evidence from my data.

One concern here is survival bias: It could be that the least productive domestic firms shut

down and disappear from the data, not reporting their dismal sales, while the least productive

exporters do not, leading to larger observed impacts on exporters. I cannot observe exit directly,

though I can see firms reporting extremely low, even zero sales. (This is not the same as shutting

down, but it is the best proxy I have.) To do my best to address this issue, Appendix Table 15

shows a regression of a zero sales indicator on the temperature index, showing no significant effect.

(Since I only observe six instances of literally zero sales in the data, the zero sales indicator actually

capture firms reporting lower total sales than the first percentile of total sales.) The table also

shows that the results for a regression of exporter status on the temperature index. If anything I

find somewhat fewer firms being exporters as a result of extreme weather. This second result is

not robust to excluding the year fixed effects, however. Without those, there is no significant effect.

Either way, the fraction of exporters certainly does not increase, suggesting that domestic firms do

not differentially exit in large numbers. Both of these results somewhat alleviate the concern of

survival bias.
sales more than non-exporters. This is because of fixed costs of accessing different markets. As long as some of
those costs need to be paid every period, an exporter that receives a negative productivity shock will not find it
worthwhile to keep selling to all of the markets is was previously active in. When the exporter chooses to leave
markets in response, this leads to a discontinuous fall in sales. Non-exporters do not see this effect, unless their
productivity shock is so extreme that they leave the domestic market entirely.

8 To highlight that year fixed effects are present purely to increase precision, and do not affect point estimates much,
Appendix Table 16 shows an estimation without year fixed effects. Results for the effect on non-exporters are much
less precise. The difference in the effect for exporters remains highly significant and similar in magnitude, however.

12



2.2.3 Sales across markets are linked

Since weather is a supply shock, I consider firm margins on the supply side when investigating

firm reactions. Interestingly, as Table 4 shows, exporters’ domestic sales also see a larger decline

in response to negative weather shocks. Non-exporters see a 6.0 percent decline in domestic sales

in response to an 80th percentile weather shock, but exporters see an 8.2 percent decrease. This

suggests a link between exporters’ international and domestic sales. I now show where that link

comes from.

2.2.4 Key mechanism: Spending on productive capability

The link is due to firm spending on productive capability. As I explained in the introduction,

productive capability comprises rented or hired equipment, space and non-production personnel.

For example, it includes rented machinery, rented office space or a sales team. These kinds of

expenditures make up about 8.5 percent of non-exporters’ and 10.9 percent of exporters’ total cost, so

they are quantitatively relevant to firms. Productive capability improves overall performance across

all markets a firm is active in, by increasing labor productivity (through providing workers with

sufficient equipment or space) or by making it easier to sell the firm’s output — it lowers the cost of

providing the firm’s products across all markets the firm serves. Faced with a negative supply shock,

firms scale back expenditures on productive capability, since these kinds of productivity-enhancing

expenditures are complementary to firm productivity. This mechanism is present in the data and

can explain the differential impact on exporters’ domestic sales I see in the data. I now present

reduced form evidence supporting this.

Table 5 shows the effect of weather shocks on productive capability expenditures by exporter

status. Productive capability expenditures combine the cost of communications, sales (including

sales staff), transportation, and rent for buildings, equipment and land, which I can see due to

the richness of the Enterprise Surveys data. I see a 1.6 percent decrease in productive capability

expenditures for domestically active firms in response to an 80th percentile weather shock, but a

significantly larger 5.3 percent decrease for exporters.9 Because these questions are not included
9 A potential worry could be that weather shocks lead firms to report a lower valuation of their productive capability,

even though they have not reduced its physical quantity. Appendix Table 21 shows, however, that weather has no
effect on firms’ valuation of their stock of machinery, where I should see that same effect at play if it mattered.
This suggests the productive capability effect I find is due to a reduction in its quantity, rather than just due to a
change in reported valuation. This also shows that, though firms might adjust capital they own in response to
climate change, they do not adjust owned capital in response to weather shocks. Owned capital also makes firms
more productive, but is not driving the immediate responses I focus on in this paper.
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in all rounds of the ES surveys, I only have detailed cost breakdowns for a sub-sample of firms,

which is why this analysis uses fewer observations than the preceding results, but this nevertheless

provides direct evidence of productive capability reactions when faced with negative weather events.

Exporters scale back fixed expenditures considerably more than non-exporters in response to negative

weather shocks.

The second column of Table 5 shows that sales per employee see a significantly larger relative

decline for exporters compared to non-exporters. I estimate a 2.7 vs. 1.1 percent decline in response

to an 80th percentile weather shock. While not a perfect proxy for productivity, this suggests

that exporters see larger productivity decreases in response to weather shocks. Exporters’ larger

reduction in productive capability therefore seems to translate into larger productivity effects as

well.

Finally, Table 6 shows a mediation analysis which adds log productive capability expenditures,

fully interacted with exporter status and the temperature index, to the domestic sales regression

from Table 4. The interaction between exporter status and the temperature index flips signs and is

longer statistically significantly different from zero, even at the ten percent level. (I de-mean log

productive capability expenditures, so all coefficients shown are evaluated at mean log productive

capability, not at zero log productive capability, which would not be defined.) Since mediation

analyses like this one add clearly endogenous regressors, I am careful in over-interpreting these

results. Nevertheless, this strongly suggests that it is because of their productive capability cutbacks

that exporters see a larger decline in domestic sales in response to weather shocks.10

2.3 Alternative explanations for differential impact on exporters’ sales

Of course, exporters are different from other firms in many ways; Table 7 shows a comparison of

exporting and non-exporting firms’ characteristics. Exporters have higher averages sales (≈USD

1,800,000 compared to ≈USD 660,000 for non-exporters), more employees (≈44 compared to ≈20),

are more likely to be in manufacturing (47 percent of exporters are in manufacturing, compared to

28 percent of non-exporters), are more likely to use international quality certifications (28 percent

compared to 10 percent) and have more experienced managers (≈15 years of experience compared

to ≈13).

It could be that these differences simply make exporters more susceptible to weather shocks,
10 Table 22 shows the domestic sales regression using only firms with non-missing log productive capability data. The

pattern of coefficients remains unchanged, though the estimates are noisier. Clearly, the mediation analysis changes
the exporter coefficient substantially even when compared to results only for this sub-sample of firms.
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explaining the larger impact on sales seen in Table 3. To address this concern, I run an extensive

battery of robustness checks that regress log total sales on the temperature index interacted with

exporter status and additionally interacted with other firm characteristics, plus base effects for

those characteristics. If it were the case that another firm characteristic is the ‘true’ reason for the

effects I find, I would expect that once I include that characteristic in the regression, the interaction

between exporter status and weather shocks loses significance and/or sees a drastically smaller point

estimate. I find that neither happens for any of the three alternative hypotheses I describe in the

rest of this section. Appendix Table 23 summarizes these robustness checks.

First, exporters tend to be large firms, which could be more reliant on short-term hired labor that

can get drawn into agriculture when negative weather shocks hit (Santangelo, 2019); accordingly,

I check whether the initial number of employees or the number of employees three years ago can

explain the exporter effect. Second, since exporters are more likely to be in large-scale manufacturing,

where temperature control can be a problem (Adhvaryu et al., 2019), I control for two- and four-digit

ISIC sectors, fully interacted with weather shocks. This also addresses concerns around an effect

through input prices — if it were true that exporters simply use a different import structure, I

would expect firms in similar sectors to face the same issue. Third, exporters could potentially be

using more complex production processes (Costinot, 2009), so I control for measures of complexity:

whether a firm has an international quality certification, the firm’s ownership structure, and the

manager’s years of experience. None of these alternative hypotheses alone can explain the different

effects for exporters, and I find that weather has a differential impact on exporters even when

including them all in the regression at once.11

I conclude from this that the effect I find is not due to a correlate of being an exporter, but

is instead about the production structure of exporting firms, and specifically about firms reacting

to negative supply shocks by scaling back productive capability. As I show in Section 3, a simple

extension of Melitz (2003) immediately yields the reduced form comparative statics I highlighted. All

that is required is that firms can hire productive capability and the model generates the comparative

statics I find. This provides a parsimonious explanation of the patterns I see in the data, including

the greater decrease in productive capability seen in Table 5 and the results of the mediation analysis
11 A final concern would be differential measurement error for exporters and non-exporters. To rule out this possibility,

I estimate the main regression using only data on firms coming directly from the firms’ books. Appendix Table 17
shows the results. Due to the greatly reduced sample size, point estimates become noisier but remain very similar
to my main results. If the main results were driven by differential measurement error, I would expect the point
estimate for the exporter differential to be close to zero. As it stands, I could not reject that the estimate using
numbers only from books is the same as the point estimate I find using my main estimation sample.
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in Table 6.

3 Model

This section develops an international trade model which captures the two core reduced form results

I highlight in the previous section: the greater impact of productivity shocks on exporters’ (i) total

and (ii) domestic sales. The model is a variant of Melitz (2003). The core mechanism I add is

the key mechanism I discuss in the previous section: firms’ ability to hire productive capability,

such as machinery, office space, or a sales team. I show that this allows the model to explain the

greater impact on exporters’ domestic sales. A standard Melitz (2003) model can only explain

why productivity shocks have a greater effect on exporters’ total sales. It cannot explain why

productivity shocks have a greater impact on domestic sales.

3.1 Demand

There are N countries and a mass of goods Gn is available in each country n. Consumers in n have

CES preferences with elasticity of substitution σ, a budget of Xn and solve

max
{qn(j)}

(∫
Gn

qn(j)
σ−1

σ dj

) σ
σ−1

s.t. Xn =
∫

Gn

qn(j)pn(j) dj (1)

This yields quantity demanded as

qn(j) = XnPσ−1
n︸ ︷︷ ︸

≡ αn

pn(j)−σ = αnpn(j)−σ (2)

where

Pn ≡
(∫

Gn

pn(j)1−σ dj

) 1
1−σ

is the optimal price index in n. I introduce the shorthand αn to denote demand factors. These

depend on total expenditures and the price index in country n. From the perspective of firms selling

in market n, a higher αn translates into higher sales in that market at any given price they charge

there, either because expenditure is large, or because products in n tend to be expensive, lowering

the firm’s relative price.
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3.2 Supply

Firms are located in their home country i and export to other countries n. Each country has an

infinite mass of potential entrants. Firm j, producing the proprietary variety j, is characterized by

its core productivity aj ∼ Fi, drawn from a country specific distribution. I adapt the framework

of Hyun and Kim (2022), which is an extension of Melitz (2003). They allow firms to choose a

common quality level (a demand shifter) across all markets they are active in.12 Instead of linking

decisions across markets via demand, I let firms purchase or hire productive capability cj . This

represents factors like machinery, office space, or a sales team. Additional productive capability

makes it cheaper to provide goods in all markets. This links choices, including entry decisions,

across markets. The cost of acquiring cj is bβc
1
β

j and measured in units of labor in i. Firm j, active

in a set of markets (countries) Mj , has total productivity ajcδ
j and incurs variable cost

v ({qn(j)}) =
∑

n∈Mj

dniqn(j) wi

ajcδ
j

which also includes an iceberg trade cost dni and the wage wi. Note that Hyun and Kim (2022) focus

on domestic firms, so their model does not feature an iceberg cost. The firm’s profit maximization

problem is

max
{pn(j),qn(j)},cj ,Mj

 ∑
n∈Mj

pn(j)qn(j) − dniqn(j) wi

ajcδ
j

− fniwi

− bβc
1
β

j wi − fiwi

(2)⇔ max
{pn(j)},cj ,Mj

 ∑
n∈Mj

αnpn(j)1−σ − dniαnpn(j)−σ wi

ajcδ
j

− fniwi

− bβc
1
β

j wi − fiwi (3)

plugging in for consumers’ optimal quantity choices to simplify the problem. Unlike Hyun and Kim

(2022) I explicitly consider market entry and exit, so I include a fixed cost fni, measured in units of

labor, for operating in each market, as in Melitz (2003). These fixed costs are costs that need to

be paid every period in order to retain market access, so they include things like maintaining an

export license, maintaining relationships with buyers, and maintaining any certifications required

by the destination country. I do not explicitly model dynamics because that would make the model

intractable.
12 Using their model as-is and focusing on quality choices could explain the differential impact I see on exporters. I

cannot, however, observe quality in the data, while I can measure productive capability. My reduced form results
suggest productive capability explains the differential exporter effect, so I model that channel of adjustment here,
rather than quality adjustments.
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I assume fii = 0 and dii = 1 for simplicity, because it makes the model computationally easier to

solve. I further include a fixed start-up cost fi, also measured in units of labor, which entrants have

to pay once to discover their core productivity aj , again as in Melitz (2003). For a given cj , optimal

prices pn(j), quantities qn(j) and sales Sn(j) for firm j in market n, as well as profits across all

markets π(j), follow from first order conditions as

pn(j) = σ

σ − 1︸ ︷︷ ︸
≡ µ

dni
wi

ajcδ
j

(4)

qn(j) = αn

(
µdni

wi

ajcδ
j

)−σ

(5)

Sn(j) = αn

(
µdni

wi

ajcδ
j

)1−σ

(6)

After solving for prices and quantities, the FOC for the optimal productive capability choice gives13

cj =

1
b

δ(µwi)−σaσ−1
j

 ∑
n∈Mj

dni
1−σαn


β

1−β(σ−1)δ

(7)

Analogous to Hyun and Kim (2022), the parameter restrictions to ensure an interior solution

are σ > 1, which is a standard CES assumption and ensures that goods are substitutes, δ > 0,

which ensures that additional productive capability decreases marginal cost, and β (σ − 1) δ < 1,

which ensures that the optimal cj is finite, because the increase in the cost of acquiring productive

capability outpaces the decrease in marginal cost. As I discuss in Section 3.5, I find that these

restrictions are fulfilled in the data.

3.3 Model reproduces key comparative static

I showed in Section 2 that weather shocks are, on net, negative supply shocks. I further showed that

these shocks have a larger impact on exporters’ domestic sales than on non-exporters’ domestic

sales. I now show a comparative static matching these reduced form results.

Let firm j in country i experience a shock shifting its core productivity to a′
j < aj . This shock

affects only firm j, leaving all others firm’s productivities unchanged. Then, compare what firm

j would have done prior to the shock to what it does when faced with the shock. Let Mj
′ ⊆ Mj

denote the set of markets the firm is active in after the shock. Using primes to denote post-shock
13 Detailed derivations for this and all following results can be found in Appendix D.
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variables, the relative decline in domestic sales is

Si(j)′

Si(j)
(6)=

a′
jc′

j
δ

ajcδ
j

σ−1
(7)=

(a′
j

aj

)(∑
n∈Mj

′ dni
1−σαn∑

n∈Mj
dni

1−σαn

)βδ


σ−1
1−β(σ−1)δ

Note that the parameter restrictions ensure the outermost exponent is positive. Note also that αn

does not change, because firm j has zero mass. An idiosyncratic shock to only firm j therefore does

not affect aggregate demand factors.

The first term in parentheses depends solely on the change in aj . The second term in parentheses

depends on the change in active markets Mj . It represents an indirect effect of the core productivity

shock which occurs if lower core productivity leads the firm to exit some markets it was previously

active in. For domestic producers, Mj
′ = Mj , since they will not exit altogether given that fii = 0.

For exporters, their profit in some markets may now be below the fixed cost of entry for the period

fni, leading them to exit the market. That means Mj
′ ⊂ Mj , so the second term in parentheses is

smaller than one, exacerbating the effect of the shock and leading to a larger relative decline in

domestic sales. The firm will similarly see a larger relative decline in total sales.

This model therefore generates the comparative statics I observe in the data. The standard

Melitz (2003) model, in contrast, generates only the comparative static for total sales. Recall that in

that model, total and core productivity are identical — there is no productive capability. When an

exporter leaves a market following a productivity shock, they see a discontinuous drop in total sales.

This leads to a larger relative decline in total sales for the exporter compared to a non-exporter.

For domestic sales, however, exporters and non-exporters see the exact same relative decline. This

is because the productivity shock only has a direct effect on domestic sales. There is no additional

indirect effect via productive capability adjustments.

3.4 Equilibrium

I now provide a definition of an equilibrium for this model. I then show how to find an equilibrium.

Some of the formal statements of equilibrium conditions follow in the section below, after the

equilibrium definition.

Definition 1 For a given a CES elasticity σ, start-up costs fn, entry costs fni, iceberg trade costs

dni, cost parameters b, β and δ, and core productivity distributions Fi, an equilibrium for this model

is a set of prices pn(j), quantities qn(j), productive capabilities cj, active markets Mj, masses
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of entrants Nn and active firms nn, incomes Xn and wages wn such that, for all firms j and all

countries n,

• Consumers are maximizing utility (1)

• Firms are maximizing profits (3)

• Expected profits prior to entry are zero in all countries (8)

• Labor supply Ln equals labor demand in all countries (9)

• Income equals expenditure in all countries, i.e. trade is balanced (10)

3.4.1 Optimal choice of active markets

The first step in finding the equilibrium is determining active markets Mj for each firm, for a given

set of demand factors αn. This is a high-dimensional combinatorial problem. Antràs, Fort, and

Tintelnot (2017) confront a similar problem when modeling input sourcing and use the algorithm

developed by Jia (2008). This relies on finding an upper bound on Mj by assuming the firm is active

in all N markets and determining whether leaving an individual market n would increase firm profits.

If so, as Jia (2008) shows, n cannot be part of the optimal set of markets. A similar procedure

yields a lower bound, starting from the firm being active in no markets at all and checking where

entry increases profits. To find the optimal Mj , I then calculate profits across all combinations of

markets between the bounds (all combinations of the markets which are present in both the lower

and upper bound).

In my setting, I can use a more computationally efficient algorithm for finding upper and lower

bounds. To find an upper bound, start by assuming the firm is active in all markets, and set that

as the initial M′
j . Then,

1. Calculate cj if the firm were active in M′
j and calculate variable profits in each market, that

is, sales in each market minus variable cost and the entry cost fni (ignoring the cost of cj)

2. Drop all markets where the firm would be earning negative variable profits from M′
j , and use

those where it makes weakly positive profits as the new M′
j

Iterate until the firm makes weakly positive variable profits in all markets in M′
j . This gives the

upper bound Mub
j . See Appendix D.3 for a proof that this is an upper bound.
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To find a lower bound, start by assuming the firm is active only at Home, and set that as the

initial M′
j . (Since I assume fii = 0, firms will always be active in the Home market.) Then,

1. Calculate cj if the firm were active in M′
j and calculate variable profits in each market, that

is, sales in each market minus variable cost and the entry cost fni (ignoring the cost of cj)

2. Add all markets where the firm would be earning positive variable profits to M′
j , and use

these plus the markets in M′
j as the new M′

j

Iterate until the firm cannot enter additional markets where it would make weakly positive variable

profits when cj is chosen optimally under M′
j . This gives the lower bound Mlb

j . See Appendix D.2

for a proof that this is a lower bound.

In simulations, I find both bounds in many fewer steps than I can find the bounds from Jia

(2008). This is largely because finding the bounds from Jia (2008) always requires as many steps as

there are markets, whereas my bounding algorithms can often exclude or include multiple markets

in one step. I also find that my bounds are usually tighter than those from Jia (2008). Both of

these factors speed up computation considerably.

Having found the bounds, I know the optimal set of active markets for all firms with Mlb
j = Mub

j .

In practice, I find this is the case for the majority of firms. For firms where the bounds do not coincide,

I could check all possible combinations of markets in between the two bounds. Unfortunately, unlike

Antràs et al. (2017), I find that the cardinality of that difference can be large. Though most firms

only need to decide between a few markets, some have over 100 different markets (on the order of

1030 combinations) to choose from. Therefore, I cannot feasibly solve the optimal market problem

by checking profit across all combinations of markets between the bounds.

Instead of searching over sets of active markets Mj and determining the optimal profit for each

set, I invert the problem. I search across cj (productive capability) to find optimal profits across

possible choices of productive capability. Determining Mj for a given cj is easy, since with a known

total productivity, market entry decisions just boil down to Melitz (2003): Firms enter markets in

which they make a variable profit (markets where sales exceed variable cost plus the entry cost).

The lower and upper bounds for markets the firm could be active in, Mlb
j and Mub

j , also yield lower

and upper bounds on cj , since as firms increase cj , they only ever enter additional markets; they do

not exit markets they are already active in. (Leaving a market the firms is making positive variable

profit in cannot increase its total profit for a given cj .) The cj the firm would optimally choose if it

were active in Mlb
j thus is a lower bound on the optimal cj , and similarly the optimal cj at Mub

j
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yields an upper bound. I then simply conduct a grid search between those two bounds. Once I have

found the cj that maximizes profits, I get the associated set of activate markets Mj and re-calculate

the optimal cj for that set of markets, to ensure I have found the firm’s true optimal choice.

The core feature of my model that enables me to use more efficient bounds and a more efficient

algorithm for optimization between bounds is that the link between entering or exiting different

markets is due to an optimal firm decision on cj . This creates a way of sorting all markets along a

scalar dimension, cj , and do a grid search along that dimension.

3.4.2 Remaining equilibrium objects

To determine αn, I turn to the free entry condition for country i. It states that expected profits

before paying the fixed start-up cost fi, required to discover core productivity, should be zero. Let
¯
ai

denote the least productive firm that finds it profitable to operate in country i (instead of shutting

down after discovering aj), then the free entry condition is

fiwi =
∫ ∞

¯
ai

1
σ

(
µ

wi

ajcj
δ

)1−σ
 ∑

n∈Mj

d1−σ
ni αn

−

 ∑
n∈Mj

fni

wi − bβc
1
β

j wi dFi (aj) (8)

The integral cannot be solved analytically because it depends on the sets of active markets Mj

(directly but also, non-linearly, through cj). These sets are a function of aj and (being sets) do not

have an easily computable antiderivative. This condition nevertheless pins down the equilibrium αn

terms, given wages and sets of active markets.

The full employment condition for country i yields the mass of entrants

Ni = µσ−1wσ
i Li∫∞

¯
ai

(
ajcδ

j

)σ−1∑
n∈Mj

d1−σ
ni αn dFi (aj)

(9)

which can be used to find the mass of active firms ni = [1 − Fi (
¯
ai)] Ni. To derive the gravity

equation, I first calculate the price index for country n as

Pn = µ

(
N∑

i=1
ni(dniwi)1−σ

∫ ∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)

) 1
1−σ
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Plugging this into aggregate trade flows from i to n leads to the gravity equation

Xni =
ni(dniwi)1−σ ∫∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)∑N

k=1 nk(dnkwk)1−σ ∫∞

¯
ank

(
ajcδ

j

)σ−1
dFk (aj)

Xn (10)

where
¯
ani is the least productive firm from i selling in n. This looks similar to the typical gravity

structure, but the integrals of total productivity across producers selling from i to n again cannot

be solved analytically. The gravity equation nevertheless pins down wages, closing the model with

world GDP as the numeraire.

3.5 Estimation

3.5.1 Reduced form

I follow the common practice of assuming that core productivities come from a Pareto distribution

with shape parameter θ, shifted by a country-specific scale parameter T
1
θ

i , where Ti captures

differences in technology across countries. I simulate firm productivities using draws uj from a

uniform distribution on (0, 1], since

uj = Tia
−θ
j

is uniformly distributed and can be used to back out aj given the dispersion parameter and technology

shifters (Eaton, Kortum, & Kramarz, 2011).

Following Eaton et al. (2011), I estimate σ based on the ratio of firms’ sales to their variable

costs. Variable costs include the cost of labor, raw materials, fuel, water, electricity, goods for resale,

and other costs of production. I first calculate the mark-up for each firm and then use the average

across firms to calibrate σ, which yields σ̂ = 3.016 with a standard error of 0.043. Table 8 shows

estimates for all parameters of the structural model.

Next, I turn to the parameters governing firms’ optimal productive capability, β and δ. Log

sales in firm j’s home market i can be written as

log (Si(j)) = I + log (αi) + (σ − 1) log (aj) − (σ + βδ − 1) log (wi) + (σ − 1) βδ log (S(j)) (11)

with I a constant. This shows that the elasticity of home market sales with respect to total sales

identifies βδ for a known σ. I make the simplifying assumption that β = δ to ease the computational
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burden during the structural estimation described below. β and δ both discipline firms’ choices of

productive capability cj , and in simulations, equilibrium wages and welfare depend only on the

product of both parameters.

I can then directly estimate δ and β by regressing log home market sales on log total sales,

country-year fixed effects (to deal with αi and wi) and proxies for core productivity aj . I proxy

for core productivity using country-sector-year fixed effects (obviating the need for country-year

fixed effects), the manager’s years of experience, log initial number of employees, log number of

employees three years ago, whether the firm uses an international quality certification, whether the

firm experienced power outages, whether the firm competes against the informal sector, whether the

firms introduced a new product or service during the last three years, whether the firm introduced

a new process during the last three years, whether the firm had any R&D expenditures, whether

the firm is part of a larger firm, whether the firm was formal when it was founded, whether the firm

applied for an electricity connection over the last three years, whether the firm applied for a water

connection over the last three years, the firm age, and legal status indicators. To allow for more

flexibility in the estimation, I add all pairwise interactions as well as fourth-degree polynomials of

all continuous variables.

I estimate (11) using only data on exporters, since purely domestically active firms mechanically

yield an elasticity of one (their home sales and total sales are identical); see Appendix Table 24

for a summary of the results. Since the estimate for βδ depends on σ̂, I obtain its standard error

via a pairs bootstrap, estimating σ and βδ for 999 bootstrap samples. I find δ̂β = 0.388 with a

standard error of 0.016, which results in δ̂ = β̂ ≈ 0.623. Regardless of the assumption that β = δ,

these parameter estimates satisfy the crucial restriction that β(σ − 1)δ < 1, ensuring an internal

solution for firms’ productive capability cj .

Finally, I need to fix the productive capability cost shifter b. This is not separately identified

from the technology shifters Ti, because making productive capability overall much cheaper has

the same effect as shifting core productivity. I assume that b = 1 to resolve this set identification

problem. The interpretation of this assumption is simply that workers can do production work and

administrative work equally well.

3.5.2 Small open economy estimation

All remaining parameters — technology shifters Ti, the technology scale parameter θ, start-up costs

fi, iceberg costs dni and entry costs fni — need to be estimated via the method of simulated moments
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(MSM). Estimating the model for the entire set of economies I have in my data is computationally

infeasible, however. Finding a single equilibrium of the model for many countries and with a large

number of simulated firms takes considerable time even with my efficient algorithm for finding active

markets.

Instead, I estimate the model for a small open economy Home (H), building on the theoretical

work by Demidova et al. (2022) and the estimation strategy in Bartelme et al. (2023). Specifically, I

solve (8) only for the Home price index αH , taking all other countries’ αn as given. I take the labor

force size LH from the World Development Indicators (World Bank, 2023).

I can estimate αn ≡ XnPσ−1
n for all other countries outside of the MSM estimation. To do that,

I run a gravity estimation using ITPD-E data on all countries but Home, similar to Bartelme et al.

(2023). I model all other countries’ economies as following the model in Melitz (2003), which means

their price indices are

Pn = σ

σ − 1

(
θF

θF − σ + 1

)− 1
θF

(
σ

Xn

) θF −σ+1
θF (σ−1)

(
N∑

i=1
Tini(dniwi)−θF (fniwi)

θF −σ+1
1−σ

)− 1
θF

where θF is the dispersion parameter for other economies’ productivity distributions. Recall that

in this model, core and total productivity are identical. I take this parameter from Melitz and

Redding (2015) as θF = 4.25.14 Everything else in this expression is either data or a parameter I

can estimate via the reduced form approaches above, while the final term in parentheses can be

recovered from a gravity estimation. Specifically, because they follow Melitz (2003), trade flows

from i to n for all other countries are

Xni = Tini(dniwi)−θF (fniwi)
θF −σ+1

1−σ∑N
l=1 Tlnl(dnlwl)−θF (fnlwl)

θF −σ+1
1−σ

Xn (12)

I estimate this as

E
[

Xni

Xn

]
= exp

{
νi + ξn + C′

niβ
}

where νi and ξn are exporter and importer fixed effects and Cni are bilateral variables capturing
14 The technology scale parameters θ and θF capture the dispersion of core productivities, one for Home, the other for

all other countries. I take θF from the literature since good estimates of this parameter exist, but allow θ ̸= θF

because those existing estimates are for the dispersion in total productivity when aj completely captures firm
productivity, that is, when core and total productivity are identical. In my model, total firm productivity is aJ cδ

j ,
which has a different distribution than core productivity aj by itself. I therefore allow for a different dispersion of
core productivity.
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trade cost from n to i. These bilateral trade costs τni combine iceberg costs and entry costs

τni ≡ d−θF
ni f

θF −σ+1
1−σ

ni (13)

Following Bartelme et al. (2023), I use distance and an indicator for contiguity to approximate

this bilateral term. I estimate this gravity equation using pseudo-Poisson maximum likelihood

estimation to deal with zero trade shares (Santos Silva & Tenreyro, 2006), based on data for all

countries except Home (Bartelme et al., 2023). To minimize measurement error in the trade data,

I calculate average real flows across all years from 2000 to 2019 and use these in the estimation.

Appendix Table 25 shows the estimation results. I recover ∑N
i=1 Tini(dniwi)−θF (fniwi)

θF −σ+1
1−σ from

the importer fixed effect ξn. I can then calculate Pn and therefore αn for all countries except Home.

3.5.3 Method of simulated moments

I estimate the remaining parameters for Home — its technology shifter TH , the technology scale

parameter θ, start-up costs fH , iceberg costs dnH and entry costs fnH — via MSM. The results

from the gravity estimation for all other countries are useful here as well, because they make it

easier to estimate dnH and fnH . I parameterize iceberg cost dnH as a function of the same variables

I include in the gravity equation, distance and the contiguity indicator,

dnH = 1 + exp {XnHγ}

where XnH also contains a constant term. For a guess of γ, I can then recover fnH from (13). I

maintain the assumptions that dHH = 1 and fHH = 0. Parameterizing dnH in this way is an exact

analogue to estimating parameters via a gravity equation beforehand and feeding the results into

the structural algorithm, as done for example in Antràs et al. (2017).

The parameters TH , θ, fH and γ are then estimated via MSM. The targeted moments are

Home’s share of exporters, exports from Home to each other country,15 the ratio of Home’s trade

with itself to its total exports, and the ratio of the 75th to the 25th percentile of domestic sales

(75/25 ratio). In simulated data, these moments are sufficient to identify all model parameters. To

minimize measurement error in the trade data, I again use average real flows across all years from

2000 to 2019 (the most recent year in the data), as I did when estimating (12).
15 In order not to overweight a few large export destinations, I take the log of exports and add the fraction of countries

Home does not export to as an additional moment.
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While all parameters are identified by all moments, the share of exporters and ratio of Home’s

trade with itself to total exports are especially helpful for identifying fH and TH , the export flows

are especially useful for identifying γ and the 75/25 is needed to identify θ. Table 8 also shows

which variation in the data is especially important for identifying which parameters. I simulate the

model using one million firms.

3.6 Estimation results

I implement the estimation in Julia, using BlackBoxOptim to find an initial set of estimates and

refining those with the Nelder-Mead Subplex implementation from NLopt, an improved version of

the standard Nelder-Mead algorithm (Bezanson, Edelman, Karpinski, & Shah, 2017; Feldt, 2023;

Johnson, 2023; Rowan, 1990). I estimate the model using Zambia as the small open economy, Home,

because I have three rounds worth of Enterprise Surveys data (2007, 2013 and 2019) and because

it could reasonably be described as a small open economy. It has a ratio of total exports to total

domestic trade (trade with itself) of ≈ 58 percent, so trade makes up a large fraction of its economy,

and it exhibits roughly balanced trade: Its trade imbalance (exports minus imports) as a fraction of

its total trade (exports plus imports) is only six percent. Finally, when I estimate a gravity model

with and without it, results basically do not differ, implying that trade dynamics among all other

countries do not depend crucially on their trade with Zambia.

Table 8 shows the parameter estimates. I estimate a core productivity dispersion parameter

θ = 7.706, which is somewhat higher than, for example, the preferred estimate for the standard Melitz

(2003) of 4.25 from Melitz and Redding (2015). (A higher θ means a less dispersed distribution.)

That my model finds a larger value makes sense, however. In Melitz (2003), θ governs the dispersion

of total productivity, whereas in my model, it governs only the dispersion of core productivity

aj , whereas total productivity ajcδ
j also depends on productive capability cj . In my model, firms’

productive capability choices multiply core productivity and lead to additional dispersion in total

productivity, so θ no longer captures the full dispersion of total productivity.

The model fits targeted moments well. Figure 7 shows a comparison of Zambian log exports

and model results. The model matches the data well — the correlation coefficient is 0.68.16 In

addition, Figure 8 shows Zambian log imports, which are not a targeted moment in the MSM

estimation, compared to the model simulation. The correlation here is even stronger, at 0.80. This
16 Because I parameterize dnH as a linear function of bilateral variables, the model cannot perfectly match each trade

flow to every destination. To do that, I would need to estimate dnH separately for every destination, which would
add over 100 parameters to the model and greatly slow down estimation.

27



is encouraging, since imports depend on the iceberg cost parameters from the MSM estimation

and other countries’ αn, which I estimate outside the model. That imports are well approximated

suggests that the theoretical model captures key relationships in the data, that the estimates of that

model reproduce those relationships for untargeted data moments, and that the MSM estimation

and estimations outside the model combine well. Comparisons of the data and estimated values for

the other three targeted moments are shown in Table 9. The model produces a share of exporters

of 15.7 percent, which is almost identical to the share of 15.2 percent in the data, a ratio of own

trade to total exports of 1.818, which is also essentially identical to the data moment of 1.819, and

a 75/25 ratio for domestic sales of 4.788, which is similar to the data moment of 3.596.

An important difference between my model and a standard Melitz (2003) model is that my

model generates a notably different distribution of total productivity, ajcδ
j . In Melitz (2003), total

productivity is drawn from a Pareto distribution and follows that exactly. In my model, total

productivity depends both on core productivity aj and productive capability cj . Figure 9 shows the

CDF of log core productivity and log total productivity. Log core productivity follows a Pareto

distribution. Log total productivity, however, is much more dispersed. It also exhibits jumps at

places where firms’ core productivity allows them to access export destinations, leading to larger

purchases of productive capability.

4 Estimating the impact of climate change

4.1 Setup

This section uses a machine learning approach to estimate the impact of climate change on firm

sales. I need this as an input to counterfactual simulations. Those simulations explore the policy

implications of productive capability reactions. The counterfactuals conduct policy experiments

under a climate change scenario. This climate change scenario is calibrated based on the machine

learning estimates I develop in this section. I discuss the counterfactuals and specifics of the

calibration in Section 5.

I require a realistic estimate of the impact of climate change on firms. Three key challenges arise

in this context. First, weather is a very high-dimensional object. Interactions and higher power

effects of various weather variables may be important. I thus need to flexibly estimate how weather

affects firm outcomes. Second, estimating the causal impact of climate change is inherently an out

of sample exercise, since climate change happens in the future. Third, firms adapt to climate change
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and my estimation needs to take this into account.

To formalize the problem, I observe firm outcomes yjt and weather data xjt,

yjt = g (xjt) + εjt

Current weather data are drawn from the current climate, xjt ∼ Fcurrent. I want to estimate

Efuture [yjt] − Ecurrent [yjt]

where Ecurrent runs across weather from the current climate Fcurrent, but Efuture runs across weather

from the future climate Ffuture. That is, I want to estimate the change in the expected firm outcome

resulting from a shift to the future climate. From the NASA NEX climate projections, I have a

sample of weather data from Ffuture. I do not, however, have data on future outcomes. Therefore, I

need to estimate g(·) and plug in future weather projections to estimate Efuture [yjt].

One solution is to pick a set of weather variables and estimate a relationship using a regression,

perhaps including splines or other somewhat flexible functional forms. The choice of weather

variables to include is not obvious, however, and gives researchers a lot of leeway. Instead, I use the

causal forest (CF) algorithm developed by Athey et al. (2019). CFs are designed to incorporate

high-dimensional data and can be tuned to protect against overfitting and to improve out of sample

performance. CFs are generally used to estimate heterogeneous treatment effects. I thank Stefan

Wager and Erik Sverdrup for pointing out to me that they can also be used to estimate and do

inference on unobserved means. Let Djt = 1 for data with observed outcomes (the ‘treatment’

group) and Djt = 0 for data without (the ‘control’ group). Keep yjt(1) = yjt for observed data

and set yjt(0) = 0 for unobserved outcomes. Then, the conditional average treatment effect for the

control group is

E [yjt(1) − yjt(0)|Djt = 0] = E [yjt − 0|Djt = 0] = E [yjt|Djt = 0]

which is the expected outcome among observations with unobserved outcomes. CFs provide efficient

cluster-robust confidence intervals for this expected outcome and can easily be estimated using the

grf package in R (Tibshirani et al., 2023). The final remaining problem is that I want to do inference

on the shift in expected outcome resulting from climate change, not just the new outcome itself. I

solve this by de-meaning outcomes prior to the estimation. The result is that the expectation of
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the de-meaned outcome, yjt − ȳ, among the set of observations with future weather data (Djt = 0),

which is what the CF estimates, is

E [yjt − ȳ|Djt = 0] = Efuture [yjt] − Ecurrent [yjt]

which is exactly what I need to estimate. (See Appendix D.8 for a derivation.) CFs thus provide a

solution to the first two challenges: They are able to incorporate high-dimensional weather data

and flexibly relating them to firm outcomes, and they perform well out of sample.

The third challenge, incorporating adaptation, can be addressed by including long-term moments

of weather in the estimation. Adaptation means reacting differently to an identical weather shock

depending on the climatic environment. For example, a firm that is used to an average yearly

temperature of 28◦C may be severely affected by a year that averages 30◦C. If over time, the average

temperature rises to 30◦C, the same firm may adapt to the changed climatic environment, for

example by installing climate control measures (Adhvaryu et al., 2019). It may then be less affected

by a 30◦C year.17 To capture this, I include longer-term moments of contemporary weather variables

in the estimation, akin to Carleton et al. (2022). Specifically, I include the mean and variance over

the preceding 20 years for each weather measure I use in the estimation.

The key shortcoming with regards to adaptation of my and any data-driven approach to the

question of adaptation is that I cannot capture how future adaptation differs from past adaptation.

If firms become better able to adapt to more extreme climates than they have been in the past, any

data-driven approach will underestimate the benefits of adaptation. If, on the other hand, climate

change leads to a harsher business environment, for example by degrading local institutions, firms

may become less able to adapt to a changing climate. In that case, any data-driven approach to

adaptation will overstate its benefits. I am aiming to provide the best estimate of the impact of

climate change I can, taking that inherent limitation into account. In this sense, any data-driven

estimate of the impact of climate change is a ballpark guess, and it may be off in either direction

due uncertainty around technology and other factors determining firms’ ability to cope with extreme

conditions, such as institutions.
17 It is also conceivable that rising average temperatures could make firms more vulnerable to weather shocks, for

example if they negatively affect local labor markets (Santangelo, 2019). My solution here can take either effect
into account.
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4.2 Results

The weather measures I use include yearly averages, yearly averages of daily values raised to the

second, third, fourth, fifth and sixth power (that is, the second to sixth non-centered moments of

each variable), as used in Carleton et al. (2022), the corresponding centered moments, and counts

for days in specific intervals and above certain thresholds. As I described above, I also include

long-term means and variances to capture adaptation. I partial out cluster fixed effects from all

variables, including the outcome, before conducting the estimation. The CF flexibly estimates the

response of firm outcomes to all of these weather measures, including their interactions.

I estimate the effects of climate change for the 2086–2090 period. That is, for each SSP, I include

projections from all 27 climate models and for each year in the 2086–2090 range and estimate the

causal effect on average sales. I choose this period because at that time, differences between the

three SSPs are clearly visible in the data.18 Table 10 shows the estimated average decline in sales

under the three different SSPs as well as 90 percent confidence intervals.19 I consistently estimate

negative effects, with larger magnitudes under more extreme climate change scenarios. The impacts

range from a 6.6 percent decrease in sales for the average firm under SPP1/2.6 to an 8.3 percent

decrease under SSP2/4.5 to a 10.8 percent decrease under SSP5/8.5. The latter two are significant

at the ten percent level, while the change under SSP1/2.6 is not (though the confidence interval only

barely includes zero). I want to highlight again that the confidence intervals I present incorporate

two sources of uncertainty. First, they of course reflect uncertainty in fitting the model (statistical

uncertainty). Second, since I combine data for many different model projections of future weather

under each scenario, the intervals are also affected by scientific uncertainty regarding the path of

future weather.
18 Appendix A.9 shows results for additional periods.
19 See Appendix D.9 for a derivation highlighting that, because I use log sales as an outcome, the causal forest

estimates can be interpreted as the expected percent change in sales, rather than the percent change in expected
sales. That is, the causal forest estimates an average of the percent decline in sales faced by each firm, rather than
estimating the percent decline in expected sales under climate change. Those two quantities coincide only if all
firms see the same percentage sales decline under climate change. If, for example, there were equally many small
and large firms in the economy, and small firms saw a 15 percent decline in sales while large firms saw a five percent
decline in sales, the expected decline in sales would be ten percent. The change in expected sales, however, would
be smaller, because larger firms see only a five percent decline in sales, so the percent change in expected sales
would be closer to five percent.
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5 Counterfactuals

This section combines the model estimates from Section 3 with the estimated impacts of climate

change from Section 4. I conduct counterfactual simulations to show that productive capability

reactions matter for climate change policy. Specifically, I show that that productive capability

reactions make (i) policies benefiting mostly larger firms and (ii) policies allowing firms to adapt to

climate change especially effective at countering the negative impacts of climate change, compared

to a model that ignores these reactions.

5.1 Calibrating climate change baseline scenario

I first calibrate a counterfactual that changes the technology parameter TH to match the estimated

impact of climate change under SPP5/8.5 from Section 4. That is, I calibrate TH so the average

firm experiences a real sales decline of 0.108 log points. The rationale for setting the counterfactual

up this way is that, since weather shocks are primarily supply shocks, climate change is modeled

as shifting the core productivity distribution. My counterfactual therefore finds the shift in the

distribution of core productivity aj which would lead to the estimated impact on firms’ real sales. I

call this the climate change baseline counterfactual. I can then conduct policy experiments under

this climate change scenario and calculate welfare impacts.

To estimate the impact of productive capability reactions on the welfare impact of different

policies, I compare results for my model to a modified version of my model in which I shut down

these reactions. That is, I fix the distribution of productive capability cj at the status quo and

do not allow it to adjust when moving to counterfactuals. I calibrate the climate change baseline

scenario for this modified model in the same way, finding the shift in TH that leads to sales losses

matching the estimated impact of climate change.

Appendix Table 29 further shows a comparison between my model and the model of Melitz

(2003), estimated in the same way as my model.20 I find that the Melitz (2003) model has difficulty

fitting the Zambian data as well as my model, especially with accounting for the observed dispersion

of firm sales. This is because the Melitz (2003) model has to fulfill the parameter restriction

θ > σ − 1. Since in this model, θ governs the dispersion in total productivity, this puts a lower

bound on that dispersion. I also find that the comparison between my model and Melitz (2003) only
20 For more details on the estimated Melitz (2003) model, Appendix Table 26 shows parameter estimates, Appendix

Table 27 shows moment comparisons, and Appendix Figures 12 and 13 further show comparisons for log exports
and imports.
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exacerbates the results I present here — where I find that productive capability reactions make a

policy more beneficial, the comparison with Melitz (2003) makes the difference even larger. Thus,

to be conservative in what I consider my main results, I present comparisons between my model

with and without productive capability reactions, rather than to Melitz (2003).

5.2 Welfare impacts under climate change baseline

I first calculate the change in welfare resulting from moving to the climate change baseline scenario

for each model. This welfare change can also be thought of as the change in real GDP, using the

consumer price index to convert nominal to real GDP. As the first row of Panel A in Table 11 shows,

I find that with productive capability reactions, welfare declines by 7.9 percent. Shutting down

productive capability reactions, I estimate an 11.8 percent welfare decrease. Note that both models

are calibrated so that the average firm sees an 0.108 log point decrease in sales between the status

quo and the counterfactual — the difference is entirely due to productive capability reactions and

their effects on the distribution of firm sales. Note also that I keep the rest of the world at its status

quo production levels, since I want to study the implications for policy effectiveness in Zambia. All

welfare level results, for example the impact of climate change on welfare in this baseline scenario,

are therefore upper bounds. If I also allowed climate change to affect the rest of the world, Zambia

would do worse as well.

In the following discussion, I focus heavily on how much of the welfare gap between the status

quo and the climate change baseline different policy interventions can close. I do not discuss in

as much detail the level differences in welfare changes between the two models, for example the

level differences in welfare under the baseline scenario. The reason is that I mostly care about

which policies are most effective at counteracting the effects of climate change. That is a question

about welfare changes between the climate change baseline scenario and different policy experiments

departing from that baseline scenario. It is a question about how much of the welfare loss under the

baseline scenario can be recovered using different policies. To briefly highlight why the level results

are different, however, Figure 10 shows how each percentile of log real sales shifts when moving from

the status quo to the climate change baseline, with and without productive capability reactions.

The figure shows the ratio of the new to the old percentile. All percentiles are shifted down in

both cases. With productive capability reactions, however, smaller firms reduce their productive

capability more than larger firms. Therefore, larger firms manage to retain more of their status quo

sales. On the flip side, smaller firms see a larger decline in sales. Overall, this allows Zambian firms
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to remain more productive and retain a better connection to export destinations, which leads to a

smaller welfare decline. The cost is that smaller firms are more severely affected.

There is a further reason to focus on changes in welfare compared to the climate change baseline

rather than welfare levels. As I explain in Section 4, my estimates of the impact of climate change

cannot account for future improvements or decreases in firms’ ability to adapt to climate change.

There is, therefore, inherent uncertainty about the exact level of welfare impacts. There is no such

uncertainty around which policies become more effective at counteracting climate change damages,

however. Certain policies, as I discuss below, become more effective at reducing losses from climate

change, and they will be more effective at reducing those losses regardless of the exact welfare

decrease we face in the baseline climate change scenario. If firms have an easier time to adapt to

future climate change, for example due to technological innovation, welfare losses will be smaller.

If we want to reduce those losses, however, it will still be true that taking productive capability

adjustments into account makes certain policies more attractive than they would have looked without

taking those adjustments into account. The same is true if future adaptation becomes harder.

5.3 Policy experiments under climate change baseline

I now turn to policy experiments under the climate change baseline. I focus on two sets of policy

experiments. For each of these, I compare welfare implications with and without productive

capability adjustments. The first set of experiments considers the impact of a policy benefiting

larger firms compared to a policy targeted at mid-sized firms. The second set considers adaptation

to climate change and mitigation of climate change itself.

5.3.1 Policies benefiting mostly large vs. mid-sized firms

The first set of policy experiments compares the effect of reducing iceberg trade costs to the effect of

reducing entry costs to foreign markets. Iceberg cost reductions benefit existing exporters, allowing

them to expand sales to foreign markets. Entry cost reductions mostly help marginal entrants.

Marginal entrants are firms with a core productivity which is almost high enough to make exporting

profitable. When entry costs are reduced, these firms can profitably start exporting. They are

therefore the main beneficiaries of entry cost reductions. These firms are smaller than existing

exporters, but larger than many other non-exporters. I therefore call these marginal entrants

mid-sized firms.

I consider a reduction in iceberg trade cost from Home to all other countries, dnH , by 10 percent
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across the board. (This is an asymmetric reduction — I keep trade costs from all other countries

to Home, dHn, fixed.) The results are presented in row two of panel A in Table 11. Compared to

current welfare, when productive capability is allowed to react, Zambia now experiences only a

4.9 percent decline compared to the status quo. This means lower variable trade costs reduce the

impact of climate change by 3.0 percentage points, or 37.6 percent (≈ 3.0/7.9) compared to the

climate change baseline. Without productive capability reactions, Zambia still sees an 8.9 percent

welfare decline under this scenario. This is a 2.9 percentage point or 24.3 percent (≈ 2.9/11.8)

improvement. Panel B of the same table also summarizes these relative changes, showing what

fraction of the baseline welfare gap can be closed using each policy intervention.

Thus, I find that over a third of the welfare impact of iceberg cost reductions, or 35 percent

(≈ (37.6 − 24.3)/37.6), is due to productive capability responses. Another way to express this is that

productive capability reactions make variable trade cost reductions 1.5 times (≈ 37.6/24.3) more

effective. A key reason for this is that variable trade cost reductions allow very productive firms,

which are already exporting, to increase their productive capability. This may hurt smaller firms,

which may not be able to retain some of their productive capability, but increases efficiency overall.

Figure 11 shows the change in the distribution of real sales when moving from the climate change

baseline scenario to the iceberg cost reduction policy experiment. With and without productive

capability reactions, smaller firms lose sales while larger firms increase sales. This is because trade

cost reductions benefit existing exporters, who hire additional production labor to expand their

operations. This puts upwards pressure on wages, which leads to sales losses for smaller firms.

Productive capability reactions exacerbate this, leading small firms to lose additional sales because

they cannot afford to retain their productive capability, while larger firms purchase additional

productive capability and become more efficient. Since large firms have considerably higher sales

than smaller firms, the overall impact is positive for the Zambian economy.

The second policy change is a reduction in entry cost fnH by 10 percent across the board. The

results are presented in row three of Panels A and B in Table 11. Here, both with and without

productive capability reactions, the effects are negligible. They are still larger with productive

capability reactions, but the difference is quite small. The reason for the overall lower impact

is that most of the benefit from entry cost reductions goes to relatively less productive firms —

marginal entrants which were not productive enough to reach export destinations before. Variable

trade cost reductions, on the other hand, benefit already exporting firms, leading to the dynamics

discussed above. This also explains why there is less of a difference in effectiveness with and without
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productive capability reactions.

The takeaway from this first set of policy experiments is that productive capability reactions

matter a lot more for policies benefiting mostly larger firms. Those policies become notably more

effective at reducing the welfare impact of climate change. Therefore, these policies are ones we

should put more weight on when considering how poor countries can cope with climate change.

5.3.2 Adaptation vs. mitigation

The second set of experiments compares increased firm adaptation to climate change with mitigating

climate change itself. The adaptation experiments shifts the climate change baseline TH up by ten

percent. This simulates firms becoming more productive in a climate change scenario. This could be

due to improved, cheaper technology allowing firms to adapt, or due to government infrastructure

investments, for example in reliable water supply infrastructure in the faced of increased risks of

drought (Islam & Hyland, 2019).

The results are presented in row four of Panels A and B in Table 11. Compared to current

welfare, when productive capability is allowed to react, Zambia now experiences only a 6.8 percent

decline compared to the status quo. This means adaptation reduces the impact of climate change

by 1.1 percentage points, or 13.8 percent (≈ 1.1/7.9), compared to the climate change baseline.

Without productive capability reactions, Zambia still sees a 10.8 percent welfare decline under this

scenario, a 1.0 percentage point or 8.8 percent (≈ 1.0/11.8) improvement.

Thus, I find that 36 percent (≈ (13.8 − 8.8)/13.8) of the welfare impact of adaptation to

climate change is due to productive capability responses. Another way to express this is that

productive capability reactions make adaptation 1.6 times (≈ 13.8/8.8) more effective. The reason

is straightforward: When firms become more productive due to improved adaptation, they react by

additionally hiring productive capability. This reinforces the productivity gains from adaptation. A

model which treats productive capability as fixed ignores this second order impact.

The mitigation scenario instead calibrates a new TH matching the estimated impact of climate

change under the SSP2/4.5 scenario. That is, the average firm under this scenario sees an 0.083

log point decline in sales. This simulates achieving enough mitigation now to end up on a more

favorable climate change trajectory in the future.

The results are presented in row five of Panels A and B in Table 11. Compared to current

welfare, when productive capability is allowed to react, Zambia now experiences only a 4.9 percent

decline compared to the status quo. This means mitigation reduces the impact of climate change
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by 3.0 percentage points, or 37.7 percent (≈ 3.0/8.0), compared to the climate change baseline.

Without productive capability reactions, Zambia still sees a 7.4 percent welfare decline under this

scenario, a 4.4 percentage point or 37.4 percent (≈ 4.4/11.8) improvement.

Here, the difference due to productive capability reactions is again quite small. The reason

is that moving to the new climate change trajectory implies a larger shift up in TH for the fixed

productive capability model. Both models explain the new trajectory by shifting core productivity

back up. With productive capability reactions, an upward shift in core productivity is accompanied

by firms purchasing more productive capability. This reinforces the upward productivity shift, and

the model needs only a smaller shift in core productivity to reach the calibration target shift in

sales. Without productive capability reactions, the implied shift is larger. Either way, the relative

welfare impact is basically the same.

The takeaway here is that a given shift in core productivity leads to a larger welfare impact

when firms react via productive capability. Adaptation means reducing the impact of climate change

on core productivity. Adaptation policies become more effective when firms increase complementary

expenditures. When thinking about mitigation, however, the two models back out differently

sized shifts in core productivity. For relative welfare changes, these do not matter as much. In

both models, firms do better and welfare improves by roughly the same relative magnitude. Thus,

productive capability reactions make policies that preserve core productivity more effective, but

should not make us reevaluate the importance of mitigating climate change.

6 Conclusion

In this paper, I show that weather shocks are, predominantly, supply shocks rather than demand

shocks for non-agricultural firms in poor countries. I further show that firms react to these shocks

by adjusting expenditures on productive capability, such as machinery, office space, or a sales team.

Productive capability lowers the cost of providing their products across all markets they serve. In

response to a negative productivity shock, firms reduce productive capability. This, in turn, makes

them less productive across all markets they are active in, reducing sales there as well. I then

develop and estimate an international trade model featuring hired productive capability and show

that it reproduces these comparative statics. I combine the model with causal forest estimates of

the impact of climate change, taking firm adaptation into account. Policy simulations under this

climate change scenario show that policies benefiting mostly larger firms become more effective
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due to productive capability reactions. For example, variable trade cost reductions, which benefit

existing exporters, are considerably more effective at mitigating the impact of climate change when

I take productive capability responses into account. Policy simulations also show that facilitating

firm adaptation to climate change becomes more effective. Firm adaptation reduces the impact of

climate on firms’ core productivity. Firm reactions — hiring additional productive capability —

reinforce this effect.

This is important as we consider what policies both rich and poor countries can adapt so poor

countries can better mitigate the impact of climate change. My reduced for results, showing that

exporters see a larger negative impact of weather shocks, might have suggested that countries should

focus more on domestic production. As counterfactual simulations show, however, this protectionist

intuition is wrong. The productive capability reactions I highlight in fact make trade policy more

effective than we might have assumed. It is especially well-suited to counteracting the negative

productivity effects of climate change and should play a significant role in climate change policy.

This is especially true for countries with small domestic markets relative to foreign markets. My

results also highlight that as rich countries consider protectionist policies in the wake of Covid

(Goldberg & Reed, 2023), they should ensure those policies do not impose unnecessary collateral

damage on poor countries. Ill-targeted, such policies could in fact greatly reduce poor countries’

ability to deal with climate change. This is especially important as climate change has a direct,

negative impact on trade networks, already creating an increased risk for poor countries in the

future (Huppertz, 2023).

I show that productive capability reactions make adaptation policy more effective, but do not

have a similar implication for mitigation policy. This might suggest that we can do less mitigation

now, since future adapation is in fact more effective. I want to stress that there are good reasons to

think that prevention is preferable to relying on future adaptation. Trade policy can, in fact, play a

key role in reducing the severity of climate change as well (Farrokhi & Lashkaripour, 2021).

Nevertheless, some amount of climate change is already occurring and will continue to occur over

the near and medium term. Poor countries will be affected by it. Understanding what policies are

especially suited for allowing them to deal with that reality is a crucial task for contemporary social

science. A better understanding of firm reactions to extreme weather is an important part of this.
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Tables

Table 1: Firm summary statistics

Variable Count Mean P25 Median P75

Sales (real 2009 USD) 40,027 807,990.85 27,548.70 104,589.13 495,465.96
Number of employees 49,514 23.03 6.00 10.00 22.00
Initial number of employees 41,212 11.59 4.00 6.00 12.00
Exporter 48,962 0.12 0.00 0.00 0.00
Manufacturing 49,919 0.31 0.00 0.00 1.00
Internat. quality cert. 48,347 0.13 0.00 0.00 0.00
Manager experience (years) 49,080 13.73 7.00 12.00 20.00
Yearly mean temperature (◦C) 28,699 29.54 26.62 30.29 33.15
Yearly total precipitation (1,000 mm) 28,699 0.99 0.57 0.92 1.28

Note: Outcomes winsorized at the 95th percentile. The lower observation counts for weather variables stem from the fact that I
can only match firm and weather data for firms that have non-missing location information. I use the ES survey weights to ensure
representativeness.

Table 2: Effect of weather shocks on sales

Variable Log sales

Temperature index −0.223∗
[0.091]

Year FE Yes
Cluster FE Yes
Clusters 587
Observations 18,273

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm
cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to
ensure representativeness.
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Table 3: Effect of weather shocks by exporter status

Variable Log sales

Temperature index −0.125
[0.296]

Temperature index × Current exporter −0.094∗∗∗
[0.006]

Current exporter 1.603∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 586
Observations 17,975

Note: Current exporters are firms that export in the current fiscal year. Temperature index is an index combining mean temperature,
temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index is an average of location-specific
z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An 0.320 increase in the index is an
80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey
round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 4: Effect of weather shocks on domestic sales

Variable Log domestic sales

Temperature index −0.186
[0.118]

Temperature index × Current exporter −0.071∗∗
[0.013]

Current exporter 0.886∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 584
Observations 17,250

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm
cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to
ensure representativeness.
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Table 5: Effect of weather shocks on productive capability and sales per employee

Variable Log productive capability Log sales/employee

Temperature index −0.049
[0.753]

−0.036
[0.722]

Temperature index × Current exporter −0.117∗∗∗
[0.001]

−0.048∗∗
[0.019]

Current exporter 1.233∗∗∗
[0.000]

0.631∗∗∗
[0.000]

Year FE Yes Yes
Cluster FE Yes Yes
Clusters 377 586
Observations 8,003 17,870
Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Productive capability expenditures
combine the cost of communications, sales (including sales staff), transportation, and rent for buildings, equipment and land. Standard
errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES
survey weights to ensure representativeness.

Table 6: Effect of weather shocks on domestic sales, mediation via productive capability

Variable Log domestic sales

Temperature index −0.182
[0.139]

Temperature index × Current exporter 0.041
[0.438]

Current exporter 0.179
[0.112]

Log productive capability controls Yes
Year FE Yes
Cluster FE Yes
Clusters 375
Observations 7,447

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Log productive capability controls
comprises log productive capability expenditures fully interacted with exporter status and the temperature index. I do not show
the coefficients on these endogenous regressors. (DM) indicates the variable is de-meaned to center interaction terms. Productive
capability expenditures combine the cost of communications, sales (including sales staff), transportation, and rent for buildings,
equipment and land. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey round.
p-values in brackets. I use the ES survey weights to ensure representativeness.
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Table 7: Exporters compared to non-exporters

Variable Mean non-exporter Mean exporter p-value

Sales (real 2009 USD) 657,600.35 1,772,946.67 0.000***
Number of employees 19.82 43.67 0.000***
Initial number of employees 10.49 18.82 0.000***
Manufacturing 0.28 0.47 0.000***
Internat. quality cert. 0.10 0.28 0.000***
Manager experience (years) 13.47 15.32 0.002***
Yearly mean temperature (◦C) 29.53 29.65 0.467
Yearly total precipitation (1,000 mm) 0.99 0.98 0.476

Note: p-values are for the null that the difference between exporters and non-exporters is zero. The underlying standard errors are
robust to heteroskedasticity.

Table 8: Parameter estimates for structural model

Parameter Source/identifying variation Estimate

Panel A: Reduced form and data

σ Sales, variable cost 3.016
(0.043)

βδ Sales regression (11) 0.384
(0.016)

Panel B: Structural estimation

θ 75/25 ratio for domestic sales 7.706
THwH Ratio of Home sales to Foreign sales 0.000
fHwH Fraction of exporters 0.002
γ0

Export flows
-1.553

γdist 0.605
γcontig 0.402

Note: Standard errors in parentheses where available. I present the minimum core productivity TH and start-up cost fH times the
estimated Home wage wH to convert them into an easier to interpret unit, millions of USD, rather than presenting them in units of
labor. The three components of γ are the intercept γ0, the coefficient on log distance γdist and the coefficient on the contiguity
indicator γcontig.

Table 9: Moment comparisons for structural model

Moment Data Model

Fraction exporting 0.152 0.153
Ratio own trade/total exports 1.819 1.504
75/25 domestic sales ratio 3.596 4.806

Note: 75/25 ratio is the ratio of the 75th to the 25th percentile. The other set of targeted moments, log exports, is shown in Figure 7.
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Table 10: Causal forest estimates for 2086–2090

Scenario Change in log sales

SSP1/2.6 −0.066
(−0.131, 0.000)

SSP2/4.5 −0.083
(−0.160, −0.006)

SSP5/8.5 −0.108
(−0.188, −0.028)

Note: Standard errors clustered by firm cluster. 90 percent confidence intervals in parentheses.

Table 11: Counterfactual change in welfare

Scenario Full model Fix cj

Panel A: Welfare gap compared to status quo

Climate change baseline -0.079 -0.118
Iceberg cost reduction -0.049 -0.089
Entry cost reduction -0.079 -0.118
Adaptation -0.068 -0.108
Mitigation -0.049 -0.074

Panel B: Fraction of welfare gap closed

Climate change baseline 0.000 0.000
Iceberg cost reduction 0.376 0.243
Entry cost reduction 0.000 0.000
Adaptation 0.138 0.088
Mitigation 0.377 0.374

Note: Each column presents results for a different model. Full model shows results for my full model and Fix cj shows results for my
model with productive capability reactions shut down (fixing the distribution of productive capability at the status quo). In panel A,
each row presents the relative change in welfare under a different counterfactual scenario compared to the status quo. For example,
a value of -0.1 means a ten percent decrease in welfare. These welfare changes are also changes in real GDP, using the optimal
consumer price index to convert nominal to real values. In panel B, each row presents what fraction of the welfare gap under the
climate change baseline scenario a given policy intervention manages to close. For example, a value of 0.1 means that ten percent of
the baseline welfare gap has been closed. Climate change baseline uses the technology parameter TH to match the estimated impact
of climate change on the Zambian economy. Starting from that scenario, iceberg cost reduction reduces variable trade costs from
Zambia to all other markets by ten percent, while entry cost reduction reduces entry cost for Zambian firms to all other markets by
ten percent. Adaptation shifts the technology parameter TH up by ten percent, whereas mitigation calibrates a new counterfactual
scenario matching the climate change impact under SSP2/4.5.
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Figures

Figure 1: Locations of firms and firm clusters across Africa and South Asia

Note: Each dot is either the location of a single firm or the location of a firm cluster. Clusters appear if several firms were recorded
as having the same location in the Enterprise Surveys data or if I was able to determine the firms’ location via geolocation methods
based on the city firms are located in.
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Figure 2: Maximum temperature on April 24, 1991

Note: The figure shows temperature from the Berkeley Earth dataset.
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Figure 3: Yearly average daily maximum temperature across climate change scenarios

Note: The figure shows yearly averages of daily maximum temperatures. The climate change projections are adjusted for differences
in baseline temperature means for each day of the year, as described in Appendix C.

Figure 4: Histogram of temperature index after partialling out cluster FE

Note: The figure shows the temperature index after partialling out cluster fixed effects. This is the same identifying variation used in
the regressions I estimate — the variation remaining in the standardized temperature index after cluster fixed effects are taken into
account. Dashed lines indicate the 20th and 80th percentile. Observations without variation after partialling out FE not shown.
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Figure 5: Distribution of yearly average daily maximum temperature, 2005–2015, for actual data
and climate change projections

Note: The figure shows the empirical CDF of the yearly average of daily maximum temperatures across firms. The climate change
projections are adjusted for differences in baseline temperature means for each day of the year, as described in Appendix C.
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Figure 6: Distribution of yearly average daily maximum temperature, 2005–2015 for actual data
and 2085–2095 for climate change projections

Note: The figure shows the empirical CDF of the yearly average of daily maximum temperatures across firms. The climate change
projections are adjusted for differences in baseline temperature means for each day of the year, as described in Appendix C.

Figure 7: Zambian log exports vs. model simulation

Note: Log exports are a targeted moment, together with the fraction of countries with zero exports.
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Figure 8: Zambian log imports vs. model simulation

Note: Log imports are an untargeted moment.
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Figure 9: Log total productivity compared to log core productivity

Note: The figure shows log total productivity aj cδ
j , which depends on core productivity aj and productive capability cj . Log core

productivity also shown for comparison.
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Figure 10: Change in log real sales under climate change baseline scenario

Note: The figure shows the change in real sales at each percentile of the real sales distribution. I calculate the ratio of each percentile
in the climate change baseline scenario to the same percentile in the status quo. Values less than one thus indicate that the percentile
shifts to the left. The grey dotted line at 1.0 indicates no change.
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Figure 11: Change in log real sales with iceberg cost reduction

Note: The figure shows the change in real sales at each percentile of the real sales distribution. I calculate the ratio of each percentile
in the iceberg trade cost reduction scenario to the same percentile in the climate change baseline scenario. Values less than one thus
indicate that the percentile shifts to the left. The grey dotted line at 1.0 indicates no change.
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Appendix A Additional tables

A.1 Additional descriptive statistics

Table 12: Number of observations by country

Country Total Non-missing sales Non-missing location

India 8,808 8,505 4,540
Nigeria 4,234 3,759 2,655
Bangladesh 2,859 1,352 2,157
Kenya 2,359 2,172 1,967
Pakistan 2,027 564 1,083
South Africa 2,022 2,003 1,272
Zambia 1,747 1,643 1,739
Ethiopia 1,455 1,265 1,348
Uganda 1,225 1,016 986
Tanzania 1,185 912 901
Congo, Dem. Rep. 1,176 1,030 403
Ghana 1,161 1,013 467
Zimbabwe 1,153 570 449
Senegal 1,061 922 809
Mozambique 993 993 479
Mali 977 849 953
Madagascar 899 721 591
Afghanistan 890 552 350
Namibia 872 652 446
Nepal 833 820 360
Rwanda 802 569 354
Cote d’Ivoire 763 700 413
Angola 756 739 529
South Sudan 669 620 181
Cameroon 640 627 314
Malawi 622 331 368
Sudan 605 227 605
Sri Lanka 578 532 0
Botswana 576 546 290
Bhutan 486 241 250
Eswatini 445 431 439
Burundi 415 411 0
Mauritius 389 376 28
Guinea 369 303 35
Mauritania 369 334 157
Burkina Faso 345 333 0
Gambia, The 315 313 0
Chad 291 143 147
Lesotho 289 143 285
Sierra Leone 287 143 143
Niger 285 108 145
Liberia 281 133 133
Togo 267 126 134
Benin 255 132 136
Eritrea 178 0 0
Guinea-Bissau 155 153 0
Cabo Verde 152 0 0
Central African Republic 145 0 139
Gabon 134 0 0
Congo, Rep. 120 0 0

Note: Total shows the total number of firms in the sample for each country. Non-missing sales shows the number of firms with
non-missing real total sales data. Non-missing location shows the number of firms with non-missing location data.
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A.2 Clustering distance choice

Table 13: Moran test for spatial correlation

Clustering distance p-value Adjusted p-value Fraction included

0.25 km 0.116 1.000 0.211
0.5 km 0.686 1.000 0.415
1.0 km 0.535 1.000 0.627
2.5 km 0.147 1.000 0.767
5.0 km 0.582 1.000 0.782

10.0 km 0.130 1.000 0.798
15.0 km 0.161 1.000 0.801
20.0 km 0.422 1.000 0.803
25.0 km 0.440 1.000 0.814
50.0 km 0.678 1.000 0.827

100.0 km 0.605 1.000 0.832
200.0 km 0.757 1.000 0.847
500.0 km 0.500 1.000 0.979

Note: The Moran test is for the null that errors from a regression of log sales on a temperature index are not correlated across
clusters. The index combines mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C
(89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of
reach variable). Standard errors clustered by firm cluster. Adjusted p-values are adjusted for multiple hypothesis testing using the
Holm-Bonferroni correction. Fraction included is the fraction of firms with non-missing location information which are included in any
cluster.
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A.3 Specification and survival robustness checks

Table 14: Effect of weather shocks on sales including lead of temperature index

Variable Log sales

Temperature index −0.220∗
[0.080]

Temperature index lead −0.037
[0.790]

Year FE Yes
Cluster FE Yes
Clusters 587
Observations 18,273

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Temperature index lead is the same
index for the next year, i.e., a one-year lead of the index. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th

percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 15: Checks for survival bias

Variable Zero sales Current exporter

Temperature index −0.004
[0.405]

−0.036∗
[0.085]

Year FE Yes Yes
Cluster FE Yes Yes
Clusters 595 592
Observations 22,458 21,810

Note: Zero sales is an indicator for firms reporting sales below the first percentile of sales. (I do not use literally zero sales because I
have only six such observations.) Current exporters are firms that export in the current fiscal year. Temperature index is an index
combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The
index is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of reach variable).
An 0.320 increase in the index is an 80th percentile weather shock. p-values in brackets. I use the ES survey weights to ensure
representativeness.
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A.4 Alternative specifications for exporter effect

Table 16: Effect of weather shocks by exporter status, no year FE

Variable Log sales

Temperature index −0.004
[0.938]

Temperature index × Current exporter −0.094∗∗∗
[0.006]

Current exporter 1.630∗∗∗
[0.000]

Cluster FE Yes
Clusters 586
Observations 17,975

Note: Current exporters are firms that export in the current fiscal year. Temperature index is an index combining mean temperature,
temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index is an average of location-specific
z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An 0.320 increase in the index is an
80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey
round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 17: Effect of weather shocks by exporter status, most reliable numbers only

Variable Log sales

Temperature index −0.120
[0.307]

Temperature index × Current exporter −0.069
[0.216]

Current exporter 1.473∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 429
Observations 6,161

Note: This estimation uses only data that came directly from firm records, as opposed to being estimates, for example. Current
exporters are firms that export in the current fiscal year. Temperature index is an index combining mean temperature, temperature
variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for
each variable (using the 20-year mean and standard deviation of reach variable). An 0.320 increase in the index is an 80th percentile
weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values
in brackets. I use the ES survey weights to ensure representativeness.
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A.5 Alternative indicators for exporter status

Table 18: Exporter effect using past exporter status

Variable Log sales

Temperature index 0.119
[0.358]

Temperature index × Past exporter −0.074∗∗
[0.036]

Past exporter 1.208∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 587
Observations 18,273

Note: Past exporter is an indicator for firms reporting a past year as their first year of exporting. Temperature index is an index
combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index
is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An
0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at
the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 19: Exporter effect using ever exporter status

Variable Log sales

Temperature index 0.141
[0.269]

Temperature index × Ever exporter −0.079∗∗
[0.022]

Ever exporter 1.384∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 586
Observations 17,975

Note: Ever exporter is an indicator for firms which exported in the past and/or report international sales this year. Temperature
index is an index combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C
(89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation
of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm cluster.
Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure
representativeness.
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Table 20: Effect on continuing, discontinuing, and first-time exporters

Variable Log sales

Temperature index −0.143
[0.178]

Temperature index × Continuing exporter −0.097∗∗∗
[0.005]

Temperature index × Discontinuing exporter −1.451∗∗∗
[0.002]

Temperature index × First-time exporter 0.092
[0.573]

Year FE Yes
Exporter status FE Yes
Cluster FE Yes
Clusters 586
Observations 17,975

Note: Continuing exporters are firms that exported in the past and do so in the observed year. Discontinuing past exporters are firms
that exported in the past and are not doing so in the observed year. First-time exporters did not export in the past, but are doing so
now. Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm
cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to
ensure representativeness.
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A.6 Additional regressions

Table 21: Effect of weather shocks on cost of repurchasing machinery

Variable Log value of re-purchasing machinery

Temperature index 0.121
[0.656]

Temperature index × Current exporter 0.035
[0.464]

Current exporter 1.635∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 412
Observations 6,858

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Outcomes winsorized at the 95th

percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 22: Effect of weather shocks on domestic sales among firms with non-missing data for log
productive capability

Variable Log domestic sales

Temperature index −0.157
[0.346]

Temperature index × Current exporter −0.070
[0.168]

Current exporter 1.039∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 375
Observations 7,447

Note: This estimation uses only firms with non-missing observations for log productive capability. Temperature index is an index
combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index
is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An
0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at
the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.
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A.7 Reduced form parameter estimation for structural model

Table 24: Sales regression

Variable Trade flows

Log sales 0.816∗∗∗
[0.000]

Manager’s years of experience 0.037∗∗∗
[0.000]

Log initial no. of employees 0.333∗∗∗
[0.000]

Log no. of employees 3 yrs. ago −0.668∗∗∗
[0.000]

International certification 0.124∗∗∗
[0.000]

Had power outage 0.060∗∗∗
[0.000]

Competes against informal sector −0.103∗∗∗
[0.000]

Introduced new product 0.238∗∗∗
[0.000]

Introduced new process 0.174∗∗∗
[0.000]

Had RD expenditure −0.131∗∗∗
[0.000]

Part of larger firm 0.133∗∗∗
[0.000]

Formal when founded 0.183∗∗∗
[0.000]

Applied for grid connection −0.085∗∗∗
[0.000]

Applied for water connection −0.103∗∗∗
[0.000]

Firm age 0.021∗∗∗
[0.000]

4th degree polynomials Yes
Pairwise interactions Yes
Country-sector (ISIC4)-year FE Yes
Observations 4,160

Note: Fourth degree polynomials are included for all continuous variables besides log sales. Pairwise interactions include only level
variables, not variables raised to a power as part of the polynomials. p-values in brackets. I use the ES survey weights to ensure
representativeness. The underlying standard errors are robust to heteroskedasticity.
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Table 25: Gravity estimation results

Variable Trade flows

Log distance −1.167∗∗∗
[0.000]

Contiguous 0.661∗∗∗
[0.000]

Importer FE Yes
Exporter FE Yes

Note: Estimated using pseudo-Poisson maximum likelihood estimation to deal with zero trade shares (Santos Silva & Tenreyro, 2006).
The coefficient on log distance therefore represents an elasticity. Based on data for all countries except Zambia (Bartelme, Lan, &
Levchenko, 2023). p-values in brackets. I use the ES survey weights to ensure representativeness. The underlying standard errors are
robust to heteroskedasticity.
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A.8 Results for Melitz (2003) estimation

Table 26: Parameter estimates for Melitz (2003)

Parameter Source/identifying variation Estimate

Panel A: Reduced form and data

σ Sales, variable cost 3.016
(0.043)

βδ Sales regression (11) 0.384
(0.016)

Panel B: Structural estimation

θ 75/25 ratio for domestic sales 4.304
THwH Ratio of Home sales to Foreign sales 0.000
fHwH Fraction of exporters 0.768
γ0

Export flows
-7.894

γdist 0.421
γcontig 5.876

Note: Standard errors in parentheses where available. I present the minimum productivity TH and start-up cost fH times the
estimated Home wage wH to convert them into an easier to interpret unit, millions of USD, rather than presenting them in units of
labor. The three components of γ are the intercept γ0, the coefficient on log distance γdist and the coefficient on the contiguity
indicator γcontig.

Table 27: Moment comparisons for structural estimation of Melitz (2003)

Moment Data Model

Fraction exporting 0.152 0.148
Ratio own trade/total exports 1.819 1.805
75/25 domestic sales ratio 3.596 1.569

Note: 75/25 ratio is the ratio of the 75th to the 25th percentile. The other set of targeted moments, log exports, is shown in Figure 12.
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A.9 Additional causal forest results

Table 28: Causal forest estimates for 2091–2095

Scenario Change in log sales

SSP1/2.6 −0.048
(−0.121, 0.026)

SSP2/4.5 −0.059
(−0.133, 0.015)

SSP5/8.5 −0.101
(−0.176, −0.026)

Note: Standard errors clustered by firm cluster. 90 percent confidence intervals in parentheses.
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A.10 Additional counterfactual results

Table 29: Counterfactual change in welfare compared to Melitz (2003)

Scenario Full model Melitz (2003)

Panel A: Welfare gap compared to status quo

Climate change baseline -0.079 -0.127
Iceberg cost reduction -0.049 -0.118
Entry cost reduction -0.079 -0.121
Adaptation -0.068 -0.111
Mitigation -0.049 -0.080

Panel B: Fraction of welfare gap closed

Climate change baseline 0.000 0.000
Iceberg cost reduction 0.376 0.071
Entry cost reduction 0.000 0.049
Adaptation 0.138 0.129
Mitigation 0.377 0.372

Note: Each column presents results for a different model. Full model shows results for my full model and Melitz (2003) shows results
for the model of Melitz (2003). In panel A, each row presents the relative change in welfare under a different counterfactual scenario
compared to the status quo. For example, a value of -0.1 means a ten percent decrease in welfare. These welfare changes are also
changes in real GDP, using the optimal consumer price index to convert nominal to real values. In panel B, each row presents what
fraction of the welfare gap under the climate change baseline scenario a given policy intervention manages to close. For example,
a value of 0.1 means that ten percent of the baseline welfare gap has been closed. Climate change baseline uses the technology
parameter TH to match the estimated impact of climate change on the Zambian economy. Starting from that scenario, iceberg cost
reduction reduces variable trade costs from Zambia to all other markets by ten percent, while entry cost reduction reduces entry cost
for Zambian firms to all other markets by ten percent. Adaptation shifts the technology parameter TH up by ten percent, whereas
mitigation calibrates a new counterfactual scenario matching the climate change impact under SSP2/4.5.
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Appendix B Additional figures

B.1 Moment comparisons for Melitz (2003) estimation

Figure 12: Zambian log exports vs. model simulation from Melitz (2003) estimation

Note: Log exports are a targeted moment, together with the fraction of countries with zero exports.
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Figure 13: Zambian log imports vs. model simulation from Melitz (2003) estimation

Note: Log imports are an untargeted moment.
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Appendix C Climate data processing

For firms that, due to their offset locations, ended up with interpolated data from CHIRPS or

BKE, I also interpolate projection data in the same way to ensure that observed changes in weather

are due to differences in weather over time at the same location, rather than weather data and

projections coming from different locations. Since I combine weather data (CHIRPS and BKE) with

the NEX-GDDP-CMIP6 projections, I need to take care to remove underlying differences in average

weather at baseline, to isolate the effect of changes in weather patterns over time (Auffhammer et al.,

2013). To this end, I also download historical runs of each model for the period from 1980–2014.

This gives me an overlapping period of 34 years to assess existing biases across models and correct

for them. For both temperature and precipitation, I calculate the average value for each day of the

year (e.g., January 1) across this overlapping period and subtract the difference from projection

data, as recommended by Auffhammer et al. (2013). For one of the climate models, TaiESM1,

temperature jumps significantly between the historical run and climate change projection, making it

impossible to adjust for bias and making me question the validity of the projection. I thus exclude

the TaiESM1 projections for both temperature and precipitation from my analyses. No other model

has this issue.
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C.1 Possible mechanisms for weather effect on productivity

Before turning to a model that incorporates this reaction, I tie up two loose ends. My results show

an effect of weather on output, which I interpret as evidence of a net productivity reduction because

of the differential impact on exporters. This begs the question, through what mechanism does

weather affect firm productivity? I will not be able to determine a single channel through which this

happens, and I think it is reasonable to assume that multiple channels are important here. There is

a large literature on productivity effect of weather in different contexts, highlighting multiple ways

in which weather can decrease productivity.

For example, Adhvaryu et al. (2019) find direct evidence for lower worker productivity on

assembly lines during hot days, exacerbated by heat-generating lighting, Somanathan et al. (2021)

find lower worker productivity in Indian manufacturing firms on hot days, and Zhang et al. (2018)

find reduced total factor productivity in Chinese manufacturing during hotter years. In their

wide-ranging literature summary, Carleton and Hsiang (2016) note negative impacts of temperature

on labor supply, which are also found to be important in Somanathan et al. (2021) and Santangelo

(2019). If workers supply less labor at each wage level, for example because they need to work on

their own subsistence farms, that has an effect similar to lower worker productivity — to produce

a given quantity, the firm needs to incur higher labor cost. These arguments may pertain more

to employees in lower skilled jobs, but as Carleton and Hsiang (2016) note, previous research also

finds that extreme temperatures reduce cognitive performance, e.g., lowering math test scores.

With imperfect climate control, even workers in an office setting would face lower productivity

due to extreme heat. Through this cognitive performance channel, temperature can reduce worker

productivity even for firms in the service sector, for example. Ultimately, working in extreme

heat makes it hard for anyone to perform their best, is at best unpleasant and at worst outright

dangerous.

Table 30 shows evidence that several of these channels are present in my data, albeit the estimates

are all somewhat noisy. For example, I see sales per employee declining by 2.4 percent following an

80th percentile weather shock, which is a direct indication that labor productivity is reduced. I also

see firms’ total operating hours increasing by 4.3 percent in response to a 80th percentile weather

shock. Since firms’ sales are falling, this suggests lower output per hour, as for example found by

Adhvaryu et al. (2019). I further find that hotter years lead to more power outages, with an 80th

percentile weather shock increasing the likelihood of an outage by 1.7 percentage points (again, the
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estimate is somewhat noisy). Outages can directly decrease firm productivity (Hardy & McCasland,

2019).

Table 30: Indications of productivity impact

Variable Log sales/employee Log weekly hours Outage

Temperature index −0.074
[0.491]

0.142∗
[0.088]

0.065∗
[0.075]

Year FE Yes Yes Yes
Cluster FE Yes Yes Yes
Clusters 587 522 595
Observations 18,133 11,837 22,327

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Each column shows results for a
different outcome. Log weekly hours is the log of the firm’s total operating hours per week. Log female employment is the log of the
firm’s number of female employees. Outage is an indicator for whether the firm experienced power outages. Outcomes winsorized at
the 95th percentile, except indicators. p-values in brackets. I use the ES survey weights to ensure representativeness.
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Appendix D Proofs and derivations

D.1 Optimal c

The FOC for the optimal distribution network gives

0 = δ
wi

aj
c−δ−1

j

 ∑
n∈Mj

dniαnpn(j)−σ

− bc
1
β

−1
j wi

⇔ c
1
β

+δ

j = 1
b

δ
1
aj

 ∑
n∈Mj

dniαnpn(j)−σ


(4)⇔ c

1
β

+δ

j = 1
b

δ(µwi)−σaσ−1
j

 ∑
n∈Mj

dni
1−σαn

 cδσ
j (14)

⇔ cj =

1
b

δ(µwi)−σaσ−1
j

 ∑
n∈Mj

dni
1−σαn


β

1−β(σ−1)δ

D.2 Proof that Mlb
j is a lower bound

I need to show that there is no set of markets Mcand
j included in Mlb

j such that exiting these

markets would increase firm profits. I first show that there is no single market included in the lower

bound that the firm could profitably exit, and then show that this also implies there is no set of

markets included in the lower bound that the firm could profitably exit.

Suppose firm j is active in markets Mj ⊇ Mlb
j with cj optimally chosen and considers whether

exiting a market n ∈ Mlb
j could increase its profit. Let M̃j = Mj \ {n} and let c̃j be the corre-

sponding optimal productive capability. Since cj is increasing in |Mj |, I know that c̃j < cj . I also

know that at the iteration of the algorithm during which n was added to Mlb
j the firm was active in

a set of markets M′
j not including n and would have made a variable profit in n at the optimal

c′
j . Since the algorithm only ever adds markets at each iteration and Mj ⊇ Mlb

j I know that every

market in M′
j must also be in M̃j = Mj \ {n}. I therefore have M′

j ⊆ M̃j which implies c′
j ≤ c̃j .

That is, the firm made a variable profit in n at some c′
j ≤ c̃j < cj . Therefore, it will certainly make

a variable profit in n at cj or c̃j , and variable losses incurred in n cannot be the reason to exit it

(since there are none). Exiting n could still increase the firm’s total profit because at M̃j , the fact

that c̃j < cj decreases its cost of acquiring productive capability. But there is nothing stopping

the firm from choosing c̃j at Mj while still incurring a variable profit in n. Since at Mj , the firm

instead optimally chooses cj , deviating to c̃j cannot increase profits. Therefore, the firm would
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never want to exit any market n ∈ Mlb
j .

This argument extends to exiting a set of markets Mcand
j that the algorithm included in Mlb

j ,

because cj depends only on the total effective demand of all markets in Mcand
j (not on their indices,

for example). The firm would make a profit in any market n ∈ Mcand, so direct losses cannot be

the reason to exit. For the firm’s choice of cj , exiting several markets at once is just like exiting one

large market, because cj depends only on the sum of αn across all markets the firm is active in. For

the same reason as above, choosing a different cj cannot increase profits.

D.3 Proof that Mub
j is an upper bound

I need to show that there is no set of markets Mcand
j excluded from Mub

j such that entering these

markets would increase firm profits. I first show that there is no single market excluded from the

upper bound that the firm could profitably enter, and then show that this also implies there is no

set of markets excluded from the upper bound that the firm could profitably enter.

Suppose firm j is active in markets Mj ⊆ Mub
j with cj optimally chosen and considers whether

entering a market n ̸∈ Mub
j could increase its profit. Let M̃j = Mj ∪ {n} and let c̃j be the

corresponding optimal productive capability. Since cj is increasing in |Mj |, I know that c̃j > cj . I

also know that at the iteration of the algorithm during which n was dropped from Mub
j the firm was

active in a set of markets M′
j including n and did not make a variable profit in n at the optimal c′

j .

Since the algorithm only ever drops markets at each iteration and Mj ⊆ Mub
j , I know that every

market in M̃j = Mj ∪ {n} must also be in M′
j . I therefore have M′

j ⊇ M̃j which implies c′
j ≥ c̃j .

That is, the firm made a variable loss in n at some c′
j ≥ c̃j > cj . Therefore, it will certainly make a

variable loss in n at cj or c̃j and variable profits made in n cannot be the reason to enter it (since

there are none). Entering n could still increase the firm’s total profit because at M̃j , the fact that

c̃j > cj increases its profit in other markets. But there is nothing stopping the firm from choosing

c̃j at Mj without incurring a variable loss in n. Since at Mj , the firm instead optimally chooses

cj , deviating to c̃j cannot increase total profits. Therefore, the firm would never want to enter any

market n ̸∈ Mub
j .

This argument extends to entering a set of markets Mcand
j that the algorithm excluded from

Mub
j , because cj depends only on the total effective demand of all markets in Mcand

j (not on their

indices, for example). The firm would make a variable loss in any market n ∈ Mcand, so variable

profits cannot be the reason to enter. For the firm’s choice of cj , entering several markets at once is

just like entering one large market, because cj depends only on the sum of αn across all markets the
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firm is active in. For the same reason as above, choosing a different cj cannot increase profits.

D.4 Mass of entrants

Letting Ωi denote the set of entrants in i, so Ni = |Ωi|, country i’s full employment condition is that

Li =
∫

Ωi

1 [aj ≥
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D.5 Price index

The price index of country n is

Pn =
(∫

Gn

pn(j)1−σ dj

) 1
1−σ

Letting Eni denote the set of goods produced in i and exported to n,

=
(

N∑
i=1

∫
Eni

pn(j)1−σ dj

) 1
1−σ

Dealing with Eni directly is cumbersome, because it involves conditional probabilities. Instead, let

Oi denote the set of goods produced in i, regardless of where they’re shipped to. Then,

=
(

N∑
i=1

∫
Oi

1 [j ∈ Eni] pn(j)1−σ dj

) 1
1−σ
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which, using that j ∈ Eni ⇔ n ∈ Mj , switching to integrating over the CDF of productivities and

remembering that there is a mass ni of firms active in country i,

=
(

N∑
i=1

ni

∫ ∞

¯
ai

1 [n ∈ Mj ] pn(j)1−σ dFi (aj)
) 1

1−σ

(4)=

 N∑
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¯
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ajcδ
j

)1−σ

dFi (aj)

 1
1−σ

Since there will also be a cutoff
¯
ani such that all firms in i with aj ≥

¯
ani will sell in n, and all other

firms in i will not,

= µ
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i=1
ni(dniwi)1−σ
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D.6 Gravity equation

Sales from firms in i to n are

Xni =
∫
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which, by definition of αn,
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D.7 Home sales as a log-linear function of total sales

From (14), the optimal c can be written as

c
1
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+δ

j = 1
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j
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Plugging (16) into sales to the Home market (6) and remembering that dii = 1 by assumption,

Si(j) = αi
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⇔ log (Si(j)) = I + log (αi) + (σ − 1) log (aj) − (σ + βδ − 1) log (wi) + (σ − 1) βδ log (S(j))

with

I ≡ (σ − 1)
[
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( 1
µ
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b

δ
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D.8 Causal forest estimates the desired quantity

The expectation of the de-meaned outcome, yjt − ȳ, among the set of observations with future

weather data (Djt = 0), is

E [yjt − ȳ|Djt = 0]

= E [yjt|Djt = 0] − E [ȳ|Djt = 0]

The average outcome ȳ is calculated using currently observed firm outcomes (observations with

Djt = 1). Therefore, its expectation across observations with unobserved outcomes is the same as

its expectation across observations with observed outcomes,

= E [yjt|Djt = 0] − E [ȳ|Djt = 1]
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Since ȳ is simply the current average outcome,

= E [yjt|Djt = 0] − Ecurrent [yjt]

Observations with Djt = 0 have weather variables drawn from the future climate Ffuture, so the first

expectation runs across Ffuture,

= Efuture [yjt] − Ecurrent [yjt]

which is the quantity I want to estimate.

D.9 Interpreting causal forest results with log outcomes

Letting O denote the universe of firms in poor countries, ff the measure of future firms, fc the

measure of current firms, yf
j firm j’s future outcome and yc

j firm j’s current outcome, the causal

forest estimand becomes (see below for a note on j vs. jt indexing)

Efuture [yj ] − Ecurrent [yj ]

=
∫

j∈O
yf

j ff (j) dj −
∫

j∈O
yc

jfc(j) dj

Now, since the sets of firms in the current and future periods are identical, the measure of firms

does not change, ff = fc = f , so

=
∫

j∈O

(
yf

j − yc
j

)
f(j) dj

Plugging in the outcome used in the estimation, log sales, yt
i = log (sp

i ) , p ∈ {c, f},

=
∫

j∈O

(
log
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j

)
− log
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j
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f(j) dj

=
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log
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 f(j) dj

= E

log
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j
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j


which is the average log change in sales, or in other words, the average firm’s decline in sales. Note

that I abstract from the time dimension within the current and future periods here and move to j
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instead of jt indexing. This is purely for simplicity of the presentation. In practice, each firm j I

observe in the sample has many future potential realizations yf
jt across future periods t. Explicitly

including this time dimension and moving to jt indexing just introduces a second inner layer of

averaging, such that the causal forest estimates

E

E
log

sf
j

sc
j

∣∣∣∣∣∣j
 = E

log

sf
j

sc
j


where the inner conditional expectation runs over future periods t for firm j, while the outer

expectation runs across firms j.
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