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Abstract

Climate change and extreme weather events are a global problem but especially affect poor
countries. The effect on agriculture is well studied, but we know less about how non-agricultural
firms cope with weather shocks and climate change. I combine firm-level information from sub-
Saharan Africa and South Asia with high-resolution weather data to study how non-agricultural
firms in poor countries respond to weather shocks in the short run. I show that weather shocks
primarily affect these firms by reducing their labor productivity and that firms scale back
expenditures on complementary inputs like rented machinery, rented space and non-production
personnel in response. This further reduces effective labor productivity. To assess the general
equilibrium and policy implications, I develop and estimate a structural model featuring these
input adjustments. I combine the model with machine learning estimates of the impact of climate
change to discipline climate change counterfactuals. I show that taking complementary input
adjustments into account makes (i) policies benefiting larger firms and (ii) policies allowing firms
to adapt to climate change more effective at reducing welfare losses from climate change.
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Climate change and extreme weather events are a global problem but especially affect poor

countries. There is an extensive literature on the effects of extreme weather on agricultural

production in poor countries, but we know relatively little about the effects of weather shocks

on non-agricultural firms. We do know that weather affects non-agricultural firms, with extreme

temperatures decreasing their sales. We further know that this effect can operate both through

a demand channel, by reducing local demand, and through a supply channel, by decreasing firm

productivity (Adhvaryu, Kala, & Nyshadham, 2019; Costinot, Donaldson, & Smith, 2016; Nath,

2020; Santangelo, 2019; Somanathan, Somanathan, Sudarshan, & Tewari, 2021; Zhang, Dêschenes,

Meng, & Zhang, 2018). We do not yet, however, have a good understanding of firm responses to

these shocks (Goicoechea & Lang, 2023). Understanding firm responses, and how we can leverage

these responses in policy design, could significantly improve our ability to help poor countries cope

with the impact of climate change.

I show that weather shocks are predominantly supply, i.e., labor productivity, shocks. I then

show that firms adjust expenditures on complementary inputs, such as rented machinery, rented

space and non-production personnel, in response to these shocks. These input adjustments further

reduce firms’ effective labor productivity. Finally, I show that these adjustments are quantitatively

important for general equilibrium counterfactuals and policy design.

I assemble a data set combining World Bank Enterprise Surveys across sub-Saharan Africa and

South Asia with high-resolution weather data. My argument then proceeds in five steps. First, I test

whether weather shocks are predominantly supply or demand shocks for these firms — we have micro

evidence that they can be both, but we do not know which channel is quantitatively more important.

This is interesting in its own right, and also a necessary first step for understanding firm responses,

since firms would respond differently to either type of shock. The test I use employs a basic open

economy intuition about exporters: They are somewhat insulated from local demand shocks, but are

less able to pass on marginal cost increases to their international buyers. They are, therefore, more

exposed to supply shocks. To measure weather shocks, I construct a temperature index combining

mean temperature, temperature variance, and the number of days with temperatures exceeding

32◦C (89.6◦F), which provides a parsimonious measure of heat stress. I regress log sales during a

given fiscal year on the temperature index during that fiscal year and test whether the impact of

heat stress on sales differs by exporter status. For identification, I include location fixed effects to

isolate random year-to-year weather variation. I find that hotter years have a significantly larger

negative impact on exporters’ total sales than on non-exporters’ total sales: An 80th percentile
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weather shock decreases non-exporters’ total sales by 3.9 percent, but exporters’ total sales by 6.9

percent.1 I thus find that exporters are more affected by extreme weather, implying that weather is,

on net, a supply shock for these firms (rather than a local demand shock).

Second, in the main reduced form result of the paper, I show that firms adjust expenditures

on inputs complementary with production labor, such as rented machinery, rented space and non-

production personnel, in response to these shocks. Importantly, I then show that these adjustments

further reduce effective labor productivity, which exacerbates the impact of the shock on productivity.

As a catch-all piece of jargon I introduce for ease of exposition, I will call these inputs productive

capability. The common feature of these inputs is that they make it cheaper for a firm to provide its

output in all markets it is active in, either by making its labor more productive (e.g., by providing

workers with sufficient equipment — rented machinery — or space — rented office space) or by

making it easier to sell the firm’s output (e.g., by reducing transaction cost, as is done by sales

staff, a key component of non-production personnel). Because it reduces the cost of providing a

firm’s output across all markets the firm serves, productive capability is complementary with the

firm’s labor productivity — when a negative productivity shock causes production lines to produce

less output, sales staff have less output to sell, and are themselves less valuable to the firm. Faced

with higher temperatures, firms therefore scale back expenditures on productive capability. This

is rational from the firm’s perspective, but has the effect of further reducing labor productivity.

I provide three key pieces of reduced form evidence for this adjustment mechanism. First, due

to the rich survey data I use, I can measure productive capability expenditures in the data.2 I

show that firms adjust productive capability in response to weather shocks: In response to an 80th

percentile weather shock, domestic producers reduce their expenditure on productive capability by

2.9 percent, while exporters reduce their expenditure by 6.7 percent. Second, a key implication of

this adjustment is that firms’ productivity should be reduced, and more so for firms that make

larger adjustments. I show that this is the case: Exporters not only see a larger reduction in total

sales as a result of weather shocks, but also a larger reduction in domestic sales. Crucially, I show

that this is driven by adjustments in productive capability: A mediation analysis controlling for

productive capability removes this differential impact on domestic sales.3

1 For comparison, these effect sizes are similar to other supply shocks found in comparable contexts, such as the
effects of ethnic conflict on Kenyan flower packers’ or mobile phone access on Indian fishers’ output, for example
(Hjort, 2014; Jensen, 2007).

2 Specifically, I observe the cost of communications, sales (including sales staff), transportation, and rent for buildings,
equipment and land.

3 I also run a battery of robustness checks showing that the differential impact on domestic sales is not driven by
obvious differences between exporters and non-exporters, such as the sectors they are active in, firm size, or the
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Third, I develop an international trade model that adds this productive capability adjustment

channel to the model of Melitz (2003). To do this, I adapt and extend the domestic multi-market

model of Hyun and Kim (2022) to an international trade setting, include market entry and exit,

and estimate the resulting model. The model generates the reduced form patterns I discuss above:

In response to a negative productivity shock, firms scale back productive capability expenditures.

This is a rational, profit maximizing response to the shock, but does have the effect of further

reducing their productivity, and therefore further reducing their sales across all markets they are

active in. The effect is larger for exporters, because exporters may no longer find it profitable to

trade with some of their export destinations following the productivity shock. When they exit

those markets, they see a discontinuous fall in total sales, mirroring the reduced form differential

impact on total sales discussed above. Exporters then also discontinuously reduce their productive

capability, which leads to a discontinuous fall in sales in all markets they are active in, including

the domestic market (again mirroring my reduced form results). Adding this productive capability

channel makes the model computationally more challenging, since firms’ decisions to enter various

markets are no longer independent: If a firm enters a new market, the additional demand it can

now reach makes it worthwhile to hire additional productive capability, which in turn can make it

profitable to enter additional markets. I develop a novel algorithm for solving this high-dimensional

combinatorial problem in my setting. While the model remains computationally more burdensome

than a standard Melitz (2003) model, I show that it can be readily estimated using novel small open

economy methods (Bartelme, Lan, & Levchenko, 2023; Demidova, Naito, & Rodríguez-Clare, 2022).

These make it possible to estimate large parts of the model using reduced form approaches, which

reduces the complexity of the structural estimation considerably without sacrificing key insights

from the model. I use Zambia as a small open economy, which is a good candidate for estimation

due to its extensive data coverage in the Enterprise Surveys, nearly balanced trade, and (globally

speaking) small size. I find that the estimated model matches targeted and non-targeted moments

well.

Fourth, in order to be able to construct climate change counterfactuals for this model, I develop

an estimate of the impact of climate change on the firms in my sample.4 As an empirical basis

for this, I collect high-resolution weather projections from NASA NEX covering a range of climate

change scenarios. To estimate the causal impact of going from the current climate to these projected

complexity of their production processes.
4 Here, climate should be thought of as the distribution of weather.
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climates, I cannot simply extrapolate my reduced form estimates, however — those estimates rely

on a parsimonious, simple functional form well-suited to understanding the marginal impacts of

weather shocks within a given climate. To extrapolate to an entirely different climate, I instead

need an estimator that solves three challenges: First, I need to capture the complexity of that

climate via a large array of different weather variables, and I need to then estimate the complex

relationship between those variables and firm outcomes in a way that allows for correct inference on

the resulting estimates. Second, I need the estimator to perform well out of sample, since future

climate change is inherently something that happens out of sample. Finally, I need to capture

firm adaptation to climate change. I show how the causal forest algorithm (Athey, Tibshirani, &

Wager, 2019) can be used to solve these three problems: It performs well and provides (using a few

simple data manipulations) reliable inference even with a large selection of explanatory variables,

can be optimized for out of sample performance, and can easily incorporate adaptation to climate

change by including long-term means and variances of all weather variables. Because estimating the

impact of moving to a new climate is a problem of general interest in climate change economics,

showing how this estimator can be adapted to solving this problem is a result of interest in its

own right. For the purposes of this paper, however, I then estimate the impact of climate change

on Zambian firms’ sales under three different climate change scenarios, using predictions from 27

different climate models for each scenario. Under a severe climate change scenario, I estimate that

the average Zambian firm faces an almost 19 percent decrease in sales by the 2080s. Even under a

mild scenario, I find that the average Zambian firm’s sales would drop by almost nine percent.

Finally, I combine these estimates with the model to construct climate change counterfactuals

and demonstrate that productive capability adjustments matter for general equilibrium results

and policy effectiveness. I first calibrate a counterfactual baseline scenario under a severe climate

change pathway. The calibration shifts the firm productivity distribution to match the estimated

impact of climate change on the average firm. I then conduct policy experiments under this baseline,

comparing my full model’s results to a modified version which shuts down firms’ productive capability

adjustments. I demonstrate two key policy implications of productive capability adjustments. First,

motivated by the development economics literature on targeting interventions along the firm size

distribution, I show that productive capability adjustments make policies which especially benefit

larger firms more effective at counteracting the impacts of climate change. Specifically, a reduction

in variable trade costs, which especially helps large exporters, becomes 1.6 times more effective

at reducing the impact of climate change, compared to the model without productive capability

4



adjustments. This is because reduced trade costs allow these larger firms especially to hire additional

productive capability, increasing their productivity. Second, I show that adaptation to climate

change becomes more effective at counteracting the impact of climate change. Allowing firms

to adapt to the climate change counterfactual — by recovering some of the productivity losses

from climate change — causes firms to increase their productive capability, further increasing

their productivity. A model without productive capability misses this endogenous productivity

adjustment.

I contribute to the literature on the impact of climate change on poor countries, especially its

impact on firms and trade (e.g., Castro-Vincenzi, 2024; Conte, 2022; Costinot et al., 2016; Nath,

2020; Santangelo, 2019; Somanathan et al., 2021; Zhang et al., 2018); see Goicoechea and Lang

(2023) for a recent summary. I add two important stylized facts to this literature: First, weather is,

on net, a supply (rather than a demand) shock. Second, non-agricultural firms (in poor countries)

adjust expenditures on productive capability — complementary inputs such as rented machinery,

rented space and non-production personnel — in response to these shocks. I build and estimate a

trade model incorporating this mechanism. While existing studies often focus on shifting patterns

of comparative advantage and differences across sectors (i.e., Ricardian effects), or on relatively

sophisticated multinationals, I focus on a very general adjustment mechanism at the firm level.

Finally, I demonstrate that productive capability adjustments make (i) policies benefiting larger

firms and (ii) policies allowing firms to adapt to climate change especially effective at counteracting

the negative impacts of climate change.

I further contribute to the broader literature on estimating the effects of weather shocks and

climate change (e.g., Auffhammer, Hsiang, Schlenker, & Sobel, 2013; Burke & Emerick, 2016; Burke,

Hsiang, & Miguel, 2015; Burke & Tanutama, 2019; Carleton & Hsiang, 2016; Carleton et al., 2022;

Castro-Vincenzi, 2024; Dell, Jones, & Olken, 2012; Deschênes & Greenstone, 2007, 2011; Lin,

Schmid, & Weisbach, 2019; Nath, 2020; Ortiz-Bobea, 2021; Somanathan et al., 2021; Zhang et al.,

2018). Here, I demonstrate how causal forests (Athey et al., 2019) can be used to solve a very

general problem in this literature, namely, the problem of estimating (and doing inference on) the

causal impact of moving from one climate to another climate. A key problem causal forests solve is

dimensionality: Weather data are very high dimensional. Existing approaches, for example linear

regression, often require researchers to pick only a few weather measures in their analysis to keep

the estimation feasible, or to achieve reasonable out of sample performance. Causal forests, on

the other hand, can easily handle high-dimensional weather data, are optimized for out of sample
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performance, and provide correct inference using only a few basic data manipulations I highlight in

the paper.

The closest paper to mine is Nath (2020), who shows that climate change causes labor to be

drawn into agriculture, because countries need to grow sufficient food to feed their population.

Since climate change especially reduces agricultural productivity, however, this labor reallocation

increases welfare losses. Reduced trade costs allow countries to import more food, which reduces this

inefficient labor reallocation and decreases damages from climate change. Relative to Nath (2020),

I focus on firm-level responses to extreme weather, rather than aggregate Ricardian reallocations

across sectors. Accordingly, I use a model of firm-based trade to study the impacts of climate change,

instead of a Ricardian model driven by comparative advantage. Further, the mechanism I study is

driven by supply-side features of how firms produce goods, and accordingly, how they can respond to

weather shocks. Nath (2020) is driven by demand-side features, namely non-homothetic preferences

and the need for food. Another related paper is Castro-Vincenzi (2024), who shows that climate risk

leads car producers to open smaller factories with spare capacity, leading to less efficient production

and higher consumer prices. The mechanism I study is relevant even for single-establishment firms

and across sectors, complementing this existing evidence on the importance of location and capacity

choice for multinationals.

The rest of the paper is organized as follows: Section 1 describes the data I use. Section 2

presents reduced form evidence on weather shocks as supply shocks and productive capability

adjustments. Section 3 develops the international trade model I use. Section 4 estimates the causal

impact of climate change on firms using causal forests. Section 5 combines the model and those

estimates, and presents counterfactual simulations showing how productive capability adjustments

change the effectiveness of different policies under climate change. Section 6 summarizes my main

findings and concludes.

1 Data

This section describes the different data sets I use throughout the paper. My analyses focus on

non-agricultural firms across sub-Saharan Africa and South Asia, which guided the selection of data

sets. I focus on these two regions because they (i) contain the countries on Earth with the highest

fraction of people living in absolute poverty and the largest number of people living in absolute

poverty, and (ii) climate change stands to be especially damaging to these regions (Costinot et al.,
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2016). Understanding how economies across these regions can cope with climate change is therefore

especially important for reducing the negative impacts of climate change, and for global poverty

reduction efforts over the next century.

1.1 Firm data: World Bank Enterprise Surveys

For data on firm outcomes and characteristics I use the World Bank Enterprise Surveys (ES).5

Specifically, I use the harmonized data set provided by the World Bank, comprised of surveys

between 2006 and 2020. The Enterprise Surveys data include formal companies with at least

five employees in the manufacturing and service sectors. The surveys contain data for firms’ last

complete fiscal year. All surveys contain weights to get representative samples of each country-year’s

non-agricultural firms, and all estimations and summary statistics in this paper use those weights.

Table 1 shows basic summary statistics for ES firms across sub-Saharan Africa and South Asia.

There is a lot of heterogeneity, with firm sizes ranging from six employees at the 25th percentile

to 22 at the 75th percentile. There is also a noticeable right tail of large firms, with the average

number of employees, 23, exceeding even the 75th percentile. (This is despite winsorizing the data

at the 95th percentile to ensure means are not overly skewed by the largest firms.) The sales

distribution is similarly skewed, with median sales of ≈USD 100,000, but average sales of ≈USD

800,000. 12 percent of firms are exporters and 31 percent are in manufacturing. The overall takeaway

is that I observe a wide range of firms, including some very large firms, offering a representative

overview of non-agricultural formal sector economic activity. Figure 1 shows the locations of all

firms across sub-Saharan Africa and South Asia, highlighting that the Enterprise Surveys have very

wide geographic coverage. This is useful for studying the overall implications of climate change,

since weather and climate change vary across space.6

To match firm and weather data, I require (i) firm locations as latitude/longitude coordinates

and (ii) the end date for the last fiscal year (since firm data cover that last fiscal year). The exact

dates for when the last fiscal year started and/or ended are sometimes missing, but I obtained meta

data from the World Bank that allow me to fill in missing fiscal year dates. I also obtained location

data from the Enterprise Surveys unit in the World Bank. For firms that lack location data, I use

information on the city, state and country the firm is located in to geocode the firm’s location, using

three different web services (OpenStreetMap, GeoNames and Google Maps) accessible via Python.
5 More information on the Enterprise Surveys data is available at https://www.enterprisesurveys.org/
6 Appendix Table 12 shows the number of firms observed by country, as well as the number of firms with non-missing

real sales data and non-missing location information.
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This fails for some location names which cannot be retrieved by any of the location services. Overall,

52 percent of my sample has non-missing location data. Of these, 86 percent have near-exact

location data provided by the World Bank, and the remainder have location data found via web

search.

1.2 Weather data: CHIRPS and Berkeley Earth

The weather variables used in most previous studies of the impact of weather shocks or climate

change are measures of temperature and precipitation (Carleton & Hsiang, 2016). I, too, use data

on both temperature and precipitation, as needed for any given analysis. I obtain precipitation data

from the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data set (Funk

et al., 2015).7 CHIRPS is a global, daily, high spatial resolution (0.05◦ grid) precipitation data set

going back to 1981. I obtain daily maximum temperature data from the Berkeley Earth (BKE)

data set (Rohde et al., 2013).8 These data are at a somewhat lower spatial resolution (1◦ grid) but

cover recent years, which is important since my most recent data points come from 2020. Figure 2

shows daily maximum temperature on April 24, 1991, to illustrate the resolution of the temperature

data. Precipitation data, as discussed above, are at an even higher resolution.

The firm locations provided by the World Bank are slightly randomly offset from the actual

firm location to preserve data confidentiality. It therefore happens in some cases that firm locations

are over the water, where CHIRPS and BKE do not cover them. For these cases, I use weather

data for the closest firm that does not have this problem to interpolate the missing data.

1.3 Climate projections: NEX-GDDP-CMIP6

I obtain projections for future weather (that is, weather drawn from a changed climate) from the

NEX-GDDP-CMIP6 data set (Thrasher, Wang, Michaelis, Melton, Lee, & Nemani, 2022; Thrasher,

Wang, Michaelis, & Nemani, 2021). These are the results of the climate model runs that are part of

the Coupled Model Intercomparison Project Phase 6 (CMIP6), downscaled to a higher resolution

and bias corrected by the NASA Center for Climate Simulation. The data contain daily projections

for temperature and precipitation, though I do not need them to accurately project temperature on

any given day; I just need them to produce reasonable projections of expected weather patterns in

future years.
7 More information on CHIRPS is available at https://www.chc.ucsb.edu/data/chirps
8 More information on BKE is available at https://berkeleyearth.org/data/
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I use projections for three different climate change scenarios; these scenarios are called Shared

Socioeconomic Pathways (SSPs). Each SSP describes a different path for future climate change

based on different assumptions about greenhouse gas emissions, population growth and international

cooperation. The three different scenarios I consider, which are the most commonly used SSPs, are

SSP1/2.6, which is a very optimistic scenario featuring climate change mitigation and sustainable

development, SSP2/4.5, which is a middle of the road scenario featuring some mitigation, and

SSP5/8.5, which features the most rapid climatic change.9 Studying results for different SSPs allows

me to incorporate deep uncertainty about the broad parameters governing the future path of climate

change.

Beyond this deep uncertainty, the NEX-GDDP-CMIP6 data contain results for 27 different

climate models for each SSP, featuring temperature and precipitation variables comparable to those

from CHIRPS and BKE. These 27 different models reflect uncertainty about modeling climate

even for a given broad climate trajectory. I combine all of these different models for a given SSP

when projecting the causal impact of climate change in Section 4. My results therefore incorporate

modeling uncertainty about future weather as well. See Appendix C for more detail on data

processing for the weather projections.

Figure 3 shows the trajectory of yearly average daily maximum temperature in the actual

data and across SSPs (taking the average across all models within each SSP). Starting in 2040,

the differences between the three scenarios become apparent, with temperature rising fastest in

SSP5/8.5, and plateauing (in fact slightly decreasing towards the end of the century) in SSP1/2.6.

1.4 Trade data

For international trade flows, I use the International Trade and Production Database for Estimation

(ITPD-E). ITPD-E covers inter- and intranational trade across all sectors of the economy. It is

designed to be used for the estimation of international trade models, especially gravity frameworks

(Borchert, Larch, Shikher, & Yotov, 2021). ITPD-E is especially useful for me since it covers a broad

range of countries, specifically across sub-Saharan Africa and South Asia, which other comparable

databases do not always contain.
9 See O’Neill et al. (2017) and Riahi et al. (2017) for more detail on the SSPs.
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2 Motivating reduced-form evidence

This section documents two new stylized facts. First, weather shocks are primarily a supply

shock (affecting firms’ labor productivity), rather than a demand shock. Second, firms adjust

productive capability (complementary inputs such as rented machinery, rented space, or non-

production personnel) in response to these shocks. These stylized facts are interesting in their own

right, since they shed light on how firms cope with adverse weather shocks. They are also the key

motivation for my modeling choices in Section 3.

2.1 Identification

I estimate regressions of the form

yjt = β1xjt + γn(j) + δt + εjt

where yjt is an outcome for firm j at location n(j) at time t, measured over the preceding fiscal

year, and xjt is a measure of weather at the firm’s location over the preceding fiscal year. I include

location fixed effects γn(j) for identification, as explained below, and year fixed effects δt purely to

gain precision in my estimates. To explore heterogeneity, I interact weather with firm characteristics

zjt,

yjt = β1xjt + xjtz′
jtβ2 + z′

jtβ3 + γn(j) + δt + εjt

The key challenge to identification is that more or less productive firms could be more likely to

be located in places with specific climates, such as hotter or colder places (e.g., Burke & Emerick,

2016). To overcome this threat, firm or location fixed effects can be used. These isolate random

year-to-year variation in weather variables. I do not have panel data on firms, so I group firms into

clusters based on geographic proximity (see below). I then average weather variables within each

cluster-fiscal year combination. Conditional on cluster fixed effects, there is now no correlation

between unobserved firm characteristics and weather shocks, because all firms in the same cluster

at the same time receive the same weather shock.

An additional econometric challenge is correlation of errors across space, an issue raised for the

historical persistence literature in Kelly (2020). Fortunately, I use variation over time rather than

just cross-sectional variation across space. By choosing an appropriate clustering distance, I can
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ensure that errors are correlated within, but not across clusters. As a result, clustered errors are

sufficient for correct inference.

I group firms into clusters using the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm, which I implement using the Python package scikit-learn (Pedregosa

et al., 2011). This algorithm takes a distance parameter to determine core groups of firms that are

located close to each other, and in a second step adds periphery firms to a cluster if they are close

enough to a set of core firms. The key trade-off here is that large clusters introduce measurement

error due to the averaging of weather variables over a larger group of firms. Small clusters, on the

other hand, leave more firms out of any cluster altogether because they are not close enough to any

other firms, dropping them from the analysis and reducing the sample size.

My preferred clustering distance is ten kilometers, since the fraction of firms included in

any cluster plateaus at this distance, while the distance is still relatively small. Therefore, the

measurement error induced by clustering at this distance should likewise be small. I also cannot

reject the null that errors at this clustering distance are uncorrelated across clusters, alleviating

concerns around spatial correlation of errors.10

To provide motivating evidence, the weather measure I use is a parsimonious indicator of adverse

weather — an index of three variables, each of which is commonly used to measure temperature

shocks or stress. The index combines (i) average temperature over the year, (ii) variance of

temperature over the year and (iii) the number of days with temperatures exceeding 32◦C (89.6◦F).

These are three different measures of how hot a year is or how much temperature varies over the

year, and each has its strengths and weaknesses. Combining them into a single index provides a

parsimonious combined measures of heat stress and general adverse weather conditions. To make the

index components comparable, I calculate location-specific z-scores for each of the three components

djt as

d̃jt = djt − d̄jt√
V̂ (djt)

where d̄jt is the average of the variable at firm j’s location over the last 20 years and
√
V̂ (djt) is

the corresponding standard deviation.11 The index is then just the average of the three z-scores.
10 See Appendix Table 13 for a formal test of error correlation at various clustering distances, as well as the fraction

of firms with non-missing location information included in any cluster.
11 Another advantage of the location-specific de-meaning is that, since my estimations include cluster fixed effects, I

now effectively use deviations of location-specific shocks from a linear growth trend to identify the effects of weather
shocks on firms, rather than relying purely on the randomness of weather shocks.
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To make the effect size more interpretable, I scale the index by its standard deviation across

locations after partialling out cluster fixed effects. I use the standard deviation after removing fixed

effects since that is the identifying variation my regressions use. Note that this of course does not

affect significance of any of the estimates. It is simply a first step towards making the results easy

to interpret.

Figure 4 shows a histogram of the resulting standardized index after partialling out fixed effects.

The figure also indicates the 20th and 80th percentiles of the variable. A one standard deviation

weather shock in either direction is quite large — most shocks are smaller in absolute magnitude

than this. To give a sense of scale, I therefore convert the one standard deviation effect sizes into

80th percentile weather shocks, or 0.320 standard deviations, in the following discussion.

Note that, for these estimations, I am interested in the effect of weather over the year on firm

outcomes. I do not want or need to separate out the impact of different components of weather

(e.g., precipitation and temperature). A higher temperature index serves as an indicator of generally

unfavorable weather conditions. For this reason, I do not control for other weather variables in

these estimations.

Note also that I want a simple, parsimonious measure of what happens when weather conditions

are unfavorable. Using a simple index means that I obtain simple to interpret regression results,

which are a good indication of the first order impact of weather shocks. Later in the paper, when

I turn to estimating the impact of climate change, I of course can no longer use this first order

approximation, and need to take the complexity of climate more seriously. Accordingly, I use a

different estimation approach once I turn to climate change in Section 4.

2.2 Results

This section presents reduced form estimation results. After briefly discussing the overall effect of

weather on firms’ sales, the section presents evidence for weather being primarily a supply (labor

productivity) shock. It then shows that firms adjust expenditures on productive capability in

response to these shocks.

2.2.1 Overall effect of weather on firms

Table 2 shows the effect of weather on firms’ log total sales. An 80th percentile weather shock

leads to a 7.1 percent decline in total sales. This is statistically different from zero at the ten

percent level, and an economically meaningful impact. Appendix Table 14 contains a version of
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this regression including a one year lead of the temperature index. Results show that the lead does

not have a significant effect on contemporary outcomes. This suggests that firms do not perfectly

anticipate future weather shocks. This pattern is consistent with the core identifying assumption —

contemporary weather shocks are as good as random.

2.2.2 Weather is a supply shock

To understand how firms respons to weather shocks, I first need to know whether weather is, on

net, a demand or supply shock. This is required since firm responses to either kind of shock could

differ markedly. We know that weather shocks affect local demand (Santangelo, 2019), but we also

have evidence that they have a supply-side effect, since they affect firms’ marginal cost (Nath, 2020;

Somanathan et al., 2021; Zhang et al., 2018). The question I want to answer is, does one of the two

channels — the demand or supply side impact of weather shocks — dominate?

If I had detailed price data, I could use these to test this. I do not, however, have those data.

Instead, I rely on a basic open economy intuition: If weather is predominantly a demand shock,

then exporters should be less affected by it, since they have access to a foreign source of demand

that is insulated from the local shock. If weather is predominantly a supply shock, on the other

hand, they should see a larger effect. This is because in the domestic market, firms can pass on

some of the marginal cost increase to local consumers. Internationally, however, it is harder to

pass on cost increases. This could be, for example, because competition is tougher.12 Figure 5

shows a simple graphical version of this intuition. It shows the marginal cost and domestic and

international marginal revenue curves faced by a firm in a small open economy. Marginal cost

is identical across markets. While the firm has some market power domestically, it takes world

prices as given. Therefore, the domestic marginal revenue curve slopes down, but the international

marginal revenue curve is flat. An increase in marginal cost then leads to a larger response for

international than for domestic sales. This is because domestically, the firm can pass on part of

the marginal cost increase via prices, but internationally it cannot, and has to adjust quantities.

Exporters therefore see a larger relative reduction in total sales in response to a supply shock.

Accordingly, I test whether weather shocks are primarily a demand or supply side issue by
12 One might think that in a monopolistic competition model such as Melitz (2003), pass-through is the same in all

markets. Even in that model, however, exporters will respond to a negative productivity shock by reducing total
sales more than non-exporters. This is because of fixed costs of accessing different markets. As long as some of
those costs need to be paid every period, an exporter that receives a negative productivity shock will not find it
worthwhile to keep selling to all of the markets is was previously active in. When the exporter chooses to leave
markets in response, this leads to a discontinuous fall in sales. Non-exporters do not see this effect, unless their
productivity shock is so extreme that they leave the domestic market entirely.
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testing whether exporters see a larger or smaller effect of weather shocks on total sales. Table 3

shows that purely domestic firms see a 4.0 percent decline in total sales in response to an 80th

percentile weather shock, while currently exporting firms see a 7.0 percent decrease, with the

difference significant at the one percent level. Appendix A.5 shows that this significant exporter

interaction term is not sensitive to using alternative ways of measuring exporter status (for example,

using past exporter status instead of current exporter status). The estimate of the base effect for

domestic producers is somewhat noisy, but as Section 4 shows, using estimation methods that can

fully capture the complexity of weather data, I do estimate a significant overall effect of weather

on firm performance.13 The key takeaway is that the supply effect of weather shocks outweighs

their demand effect. I do not take a stance on the exact channel through which weather affects

firm productivity, but Appendix D lays out several well-documented channels as well as supporting

evidence from my data.

One concern here is survival bias: It could be that the least productive domestic firms shut

down and disappear from the data, thus not reporting their reduced sales, while the least productive

exporters do not have to shut down, and thus report their reduced sales. This would lead to larger

observed impacts on exporters. I cannot observe exit directly, though I can see firms reporting

extremely low, even zero sales. (This is not the same as shutting down, but it is the best proxy I

have.) To do my best to address this issue, Appendix Table 15 shows a regression of a ‘zero sales’

indicator on the temperature index, showing no significant effect. (Since I only observe six instances

of literally zero sales in the data, the indicator actually captures firms reporting total sales below

the first percentile of total sales.) The table also shows results for a regression of exporter status on

the temperature index. If survival bias were a concern, I should see a higher fraction of exporters

as a result of negative weather shocks. If anything, though, I find somewhat fewer firms being

exporters as a result of extreme weather. (This second result is not robust to excluding the year

fixed effects, however — without the fixed effects, there is no significant effect.) Either way, the

fraction of exporters certainly does not increase, suggesting that domestic firms do not differentially

exit in large numbers. Both of these results help to alleviate the concern of survival bias.
13 To highlight that year fixed effects are present purely to increase precision, and do not affect point estimates much,

Appendix Table 16 shows an estimation without year fixed effects. Results for the effect on non-exporters are much
less precise. The exporter interaction term remains highly significant and similar in magnitude, however.
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2.2.3 Firms adjust spending on productive capability in response

Since weather is a supply shock, I focus on an obvious response to a decline in labor productivity:

Scaling back expenditures on productive capability, because it is complementary with labor produc-

tivity. As I explained in the introduction, productive capability comprises rented machinery, rented

space or non-production personnel. For example, it includes rented machinery, rented office space,

or a sales team. These kinds of expenditures make up about 8.5 percent of non-exporters’ and 10.9

percent of exporters’ total cost, so they are quantitatively relevant to firms. Since they are rented

or hired, rather than owned, they could in principal be adjusted in the short run, as a response to

supply shocks.

Productive capability improves overall performance across all markets a firm is active in, by

increasing labor productivity (through providing workers with sufficient equipment or space) or

by making it easier to sell the firm’s output (e.g., by reducing transaction cost). Put differently,

productive capability lowers the cost of providing the firm’s output across all markets the firm is

active in. Faced with a negative supply shock, firms scale back expenditures on productive capability,

since these kinds of productivity-enhancing inputs are complementary to firm productivity. (That

is, when workers on the production line have a difficult time producing goods, members of the

sales team, for example, are also less valuable to the firm — they have fewer goods to sell.) This

adjustment is rational from the firm’s perspective, but it further reduces labor productivity. In

that sense, it exacerbates (goes in the same direction as) the impact of the supply shock. A key

implication is that sales across all markets the firm is active in fall even further as a result of this

input adjustment, compared to how much they would fall as a result of a negative supply shock

alone. I now present reduced form evidence showing that (i) this productive capability adjustment

is visible in the data, (ii) spillovers to sales across all markets (a core implication of this adjustment,

as I just explained) are visible in the data, and (iii) productive capability adjustments mediate (i.e.,

explain) these spillovers.

First, I check for productive capability adjustments in the data — due to the richness of the

Enterprise Surveys data, I can observe these adjustments directly. Specifically, I measure productive

capability expenditures by adding up the cost of communications, sales (including sales staff),

transportation, and rent for buildings, equipment and land. Table 5 shows the effect of weather

shocks on productive capability expenditures by exporter status. I see a 1.6 percent decrease in

productive capability expenditures for domestically active firms in response to an 80th percentile
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weather shock, but a significantly larger 5.3 percent decrease for exporters. This is consistent with

the previous results that exporters reduce their overall sales more in the face of these supply shocks

than non-exporters — accordingly, to exporters, these complementary inputs become even less

valuable than to non-exporters.14

Because questions on firms’ detailed cost breakdowns required to measure productive capability

are not included in all rounds of the Enterprise surveys, this analysis has to rely on a sub-sample

of firms. Nevertheless, it provides direct evidence of productive capability adjustments in the

face of negative weather shocks. Furthermore, the results are consistent with the supply shock

intuition I find above — exporters scale back these complementary inputs considerably more than

non-exporters in response to negative weather shocks.

A key implication of productive capability being complementary with labor productivity is that

this reduction in productive capability should feed through into a decline in productivity. I cannot

measure productivity directly, but I can use sales per employee as a proxy for productivity. The

second column of Table 5 shows that sales per employee see a significantly larger relative decline for

exporters compared to non-exporters. I estimate a 2.7 vs. 1.1 percent decline in response to an

80th percentile weather shock. While not a perfect proxy for productivity, this at least provides

suggestive evidence that exporters see larger productivity decreases in response to weather shocks.

Exporters’ larger reductions in productive capability therefore indeed seem to translate into larger

productivity declines as well.

Second, as explained above, adjustments in productive capability should lead to spillovers on

sales across all markets firms are active in. I do not have detailed data on which exact markets

firms are selling to, but I can differentiate between domestic and international sales. Why is this

distinction useful? Weather shocks being supply shocks explains why exporter should see larger

declines in total sales due to weather shocks: they cannot easily pass these shocks on to their

international customers via prices, and instead have to adjust quantities. Accordingly, exporters

also scale back productive capability more, which then causes a larger decline in productivity for

exporters compared to non-exporters as well. This should create a spillover effect and lead to a

larger decline in domestic sales as well — exporters should see larger declines in domestic sales than
14 A potential worry could be that weather shocks lead firms to report a lower valuation of their productive capability,

even though they have not reduced its physical quantity. Appendix Table 21 shows, however, that weather has no
effect on firms’ valuation of their stock of machinery, where I should see that same effect at play if it mattered.
This suggests the productive capability effect I find is due to a reduction in its quantity, rather than just due to a
change in reported valuation. This also shows that, though firms might adjust capital they own in response to
climate change, i.e., in the longer term, they do not adjust owned capital in response to weather shocks, i.e., in the
short run. Owned capital adjustments are thus not driving the results I find in this paper.
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non-exporters, due to their productive capability adjustments. Table 4 shows a regression of purely

domestic sales on weather shocks by exporter status. Indeed, exporters’ domestic sales also see a

larger decline in response to negative weather shocks. Non-exporters see a 6.0 percent decline in

domestic sales in response to an 80th percentile weather shock, but exporters see an 8.2 percent

decrease. I thus find that this key implication of productive capability adjustments — spillovers to

sales in all markets — is present in the data as well.

Finally, I do my best to check whether this spillover to domestic sales is indeed caused by

exporters adjusting their productive capability more. Table 6 shows a mediation analysis which adds

log productive capability expenditures, fully interacted with exporter status and the temperature

index, to the domestic sales regression from Table 4. The interaction between exporter status and

the temperature index flips sign and is longer statistically significantly different from zero, even at

the ten percent level. (I de-mean log productive capability expenditures, so all coefficients shown

are evaluated at mean log productive capability.) Since mediation analyses like this one add clearly

endogenous regressors, I am careful in over-interpreting these results. Nevertheless, this strongly

suggests that it is because of their productive capability cutbacks that exporters see a larger decline

in domestic sales in response to weather shocks.15

2.3 Alternative explanations for differential impact on exporters’ sales

Of course, exporters are different from other firms in many ways; Table 7 shows a comparison of

exporting and non-exporting firms’ characteristics. Exporters have higher averages sales (≈USD

1,800,000 compared to ≈USD 660,000 for non-exporters), more employees (≈44 compared to ≈20),

are more likely to be in manufacturing (47 percent of exporters are in manufacturing, compared to

28 percent of non-exporters), are more likely to use international quality certifications (28 percent

compared to 10 percent) and have more experienced managers (≈15 years of experience compared

to ≈13).

It could be that these differences simply make exporters more susceptible to weather shocks,

explaining the larger impact on sales seen in Table 3. To address this concern, I run an extensive

battery of robustness checks that regress log total sales on the temperature index interacted with

exporter status and additionally interacted with other firm characteristics, plus base effects for

those characteristics. If it were the case that differences in another firm characteristic are the
15 Table 22 shows the domestic sales regression using only firms with non-missing log productive capability data. The

pattern of coefficients remains unchanged, though the estimates are noisier. Clearly, the mediation analysis changes
the exporter coefficient substantially even when compared to results only for this sub-sample of firms.
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true underlying cause of the differential impacts I find, I would expect that once I include that

characteristic in the regression, the interaction between exporter status and weather shocks should

lose significance and/or see a drastically smaller point estimate. I find that neither happens for

any of the three alternative hypotheses I describe in the rest of this section. Appendix Table 23

summarizes all related robustness checks.

First, exporters tend to be large firms, which could be more reliant on short-term hired labor that

can get drawn into agriculture when negative weather shocks hit (Santangelo, 2019); accordingly,

I check whether the initial number of employees or the number of employees three years ago can

explain the exporter effect. Second, since exporters are more likely to be in large-scale manufacturing,

where temperature control can be a problem (Adhvaryu et al., 2019), I control for two- and four-digit

ISIC sectors, fully interacted with weather shocks. This also addresses concerns around an effect

through input prices — if it were true that exporters simply use a different import structure due

to the sector they are active in, I would expect firms in similar sectors to face the same issue.

Third, exporters could potentially be using more complex production processes (Costinot, 2009),

so I control for measures of complexity: whether a firm has an international quality certification,

the firm’s ownership structure, and the manager’s years of experience. None of these alternative

hypotheses alone can explain the different effects for exporters, and I find that weather has a

differential impact on exporters even when including them all in the regression at once.16

I conclude from this that the effects I find are not due to a correlate of being an exporter, but

are instead driven by weather being a supply shock and firms adjusting complementary inputs, i.e.,

by adjusting productive capability, in response. As I show in Section 3, a simple extension of Melitz

(2003) allowing firms to hire productive capability immediately yields the reduced form comparative

statics I highlighted. This provides a parsimonious explanation of the patterns I see in the data,

including the greater decrease in productive capability for exporters seen in Table 5, the spillovers

to domestic sales seen in Table 4 and the results of the mediation analysis in Table 6.
16 A final concern would be differential measurement error for exporters and non-exporters. To rule out this possibility,

I estimate the main regression using only data on firms coming directly from the firms’ books. Appendix Table 17
shows the results. Due to the greatly reduced sample size, point estimates become noisier but remain very similar
to my main results. If the main results were driven by differential measurement error, I would expect the point
estimate for the exporter differential to be close to zero. As it stands, I could not reject that the estimate using
numbers only from books is the same as the point estimate I find using my main estimation sample.
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3 Model

This section develops an international trade model which captures the core reduced form results

from the previous section: (i) the greater impact of productivity shocks on exporters’ total sales, (ii)

the resulting adjustment in productive capability being larger for exporters, and (iii) this adjustment

causing a differential impact on domestic sales. The model is a variant of Melitz (2003). The core

mechanism I add is exactly the key mechanism I discuss in the previous section: firms’ ability to hire

productive capability, such as rented machinery, rented office space, or non-production personnel.

I show that this allows the model to explain the greater impact of productivity shocks on both

exporters’ total and domestic sales, while the standard Melitz (2003) model can only explain the

greater impact on exporters’ total sales.

3.1 Demand

There are N countries. A mass of goods Gn is available in country n. Consumers in n have CES

preferences with elasticity of substitution σ, a budget of Xn, and solve

max
{qn(j)}

(∫
Gn

qn(j)
σ−1

σ dj

) σ
σ−1

s.t. Xn =
∫

Gn

qn(j)pn(j) dj (1)

This yields quantity demanded as

qn(j) = XnPσ−1
n︸ ︷︷ ︸

≡ αn

pn(j)−σ = αnpn(j)−σ (2)

where

Pn ≡
(∫

Gn

pn(j)1−σ dj

) 1
1−σ

is the optimal price index in n. I introduce the shorthand αn to denote demand factors. These

depend on total expenditures and the price index in country n. From the perspective of firms selling

in market n, a higher αn translates into higher sales in that market at any given price they charge

there, either because total expenditure in n is large, or because other products in n tend to be

expensive, lowering the firm’s relative price.
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3.2 Supply

Firms are located in their home country i and export to other countries n. Each country has an

infinite mass of potential entrants. Firm j, producing the proprietary variety j, is characterized by

its core productivity aj ∼ Fi, drawn from a country specific distribution. I adapt the framework of

Hyun and Kim (2022), which is an extension of Melitz (2003). They allow firms to choose a common

quality level (a demand shifter) across all markets they are active in.17 Instead of linking decisions

across markets via demand, however, I let firms hire productive capability cj . (As a simplifying

assumption, I assume productive capability is hired labor, though it represents factors like rented

machinery, rented office space, or non-production personnel.) Additional productive capability

makes it cheaper to provide goods in all markets. This links firm choices, including market entry

decisions, across markets. The cost of acquiring cj is bβc
1
β

j and measured in units of labor in i. Firm

j, active in a set of markets (countries) Mj , has total productivity ajcδ
j and incurs variable cost

v ({qn(j)}) =
∑

n∈Mj

dniqn(j) wi

ajcδ
j

which also includes an iceberg trade cost dni and the wage wi. Note that Hyun and Kim (2022) focus

on domestic firms, so their model does not feature an iceberg cost. The firm’s profit maximization

problem is

max
{pn(j),qn(j)},cj ,Mj

 ∑
n∈Mj

pn(j)qn(j) − dniqn(j) wi

ajcδ
j

− fniwi

− bβc
1
β

j wi − fiwi

(2)⇔ max
{pn(j)},cj ,Mj

 ∑
n∈Mj

αnpn(j)1−σ − dniαnpn(j)−σ wi

ajcδ
j

− fniwi

− bβc
1
β

j wi − fiwi (3)

plugging in for consumers’ optimal quantity choices to simplify the problem. Unlike Hyun and Kim

(2022) I explicitly consider market entry and exit, so I include a fixed cost fni, measured in units of

labor, for operating in each market, as in Melitz (2003). These fixed costs are costs that need to

be paid every period in order to retain market access, so they include things like maintaining an

export license, maintaining relationships with buyers, and maintaining any certifications required

by the destination country. I do not explicitly model dynamics because that would make the model
17 Using their model as-is and focusing on quality choices could explain the differential impact I see on exporters. I

cannot, however, observe quality in the data, while I can measure productive capability. My reduced form results
suggest productive capability explains the differential exporter effect, which suggests these are first order responsible
for the patterns I observe in the data. Accordingly, I model that channel of adjustment here, rather than quality
adjustments.
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intractable without gaining much insight — productive capability is hired rather than owned, so

related decisions are not linked across periods.

I assume no entry or iceberg cost for the domestic market (fii = 0 and dii = 1) for simplicity —

it makes the model computationally easier to solve. I further include a fixed start-up cost fi, also

measured in units of labor, which entrants have to pay once to discover their core productivity aj ,

again as in Melitz (2003). For a given cj , optimal prices pn(j), quantities qn(j) and sales Sn(j) for

firm j in market n, as well as profits across all markets π(j), follow from first order conditions as

pn(j) = σ

σ − 1︸ ︷︷ ︸
≡ µ

dni
wi

ajcδ
j

(4)

qn(j) = αn

(
µdni

wi

ajcδ
j

)−σ

(5)

Sn(j) = αn

(
µdni

wi

ajcδ
j

)1−σ

(6)

After solving for prices and quantities, the FOC for the optimal productive capability choice gives18

cj =

1
b

δ(µwi)−σaσ−1
j

 ∑
n∈Mj

dni
1−σαn


β

1−β(σ−1)δ

(7)

Analogous to Hyun and Kim (2022), the parameter restrictions to ensure an interior solution

are σ > 1, which is a standard CES assumption and ensures that goods are substitutes, δ > 0,

which ensures that additional productive capability decreases marginal cost, and β (σ − 1) δ < 1,

which ensures that the optimal cj is finite, because the increase in the cost of acquiring productive

capability outpaces the decrease in marginal cost. As I discuss in Section 3.5, I find that these

restrictions are fulfilled in the data.

3.3 Productive capability enables reproducing domestic sales result

Recall from Section 2 that weather shocks are, primarily, supply shocks, and thus have a larger impact

on exporters’ total sales, compared to non-exporters. Due to productive capability adjustments,

this spills over into a larger impact on exporters’ domestic sales as well. I now show that my model

yields comparative statics matching these reduced form results.

Let firm j in country i experience a shock shifting its core productivity to a′
j < aj . This shock

18 Detailed derivations for this and all following results can be found in Appendix E.
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affects only firm j, leaving all others firms’ productivities unchanged. Then, compare what firm

j would have done prior to the shock to what it does when faced with the shock. Let Mj
′ ⊆ Mj

denote the set of markets the firm is active in after the shock. Using primes to denote post-shock

variables, the relative decline in domestic sales is

Si(j)′

Si(j)
(6)=

a′
jc′

j
δ

ajcδ
j

σ−1
(7)=

(a′
j

aj

)(∑
n∈Mj

′ dni
1−σαn∑

n∈Mj
dni

1−σαn

)βδ


σ−1
1−β(σ−1)δ

Note that the parameter restrictions ensure the outermost exponent is positive. Note also that none

of the αn change as a result of the shock to firm j, because firm j has zero mass. An idiosyncratic

shock to only firm j therefore does not affect aggregate demand factors in market n.

The first term in parentheses depends solely on the change in core productivity aj , and is less

than one by assumption. For a given relative reduction in productivity a′
j/aj , both an exporter

and a purely domestic firm would see the same impact on domestic sales from this term. The

second term in parentheses, however, depends on the change in active markets Mj , and is present

only because the firm’s optimal productive capability depends on the set of active markets. This

term thus represents an indirect effect of the core productivity shock which operates through

productive capability adjustments: If lower core productivity leads the firm to exit some markets it

was previously active in, it will scale back productive capability, which will further reduce its total

productivity, and hence reduce its domestic sales. For purely domestic producers, Mj
′ = Mj , since

they will not exit altogether given that fii = 0, and the second term is equal to one. For exporters,

though, their profit in some markets may now be below the fixed cost of entry for the period fni,

leading them to exit the market. That means Mj
′ ⊂ Mj , so the second term in parentheses is

smaller than one, exacerbating the effect of the shock and leading to a larger relative decline in

domestic sales. (The firm will similarly see a larger relative decline in total sales.)

This model therefore generates the comparative statics I observe in the data. The standard

Melitz (2003) model, in contrast, generates only the comparative static for total sales. Recall that in

that model, total and core productivity are identical — there is no productive capability. When an

exporter leaves a market following a productivity shock, they see a discontinuous drop in total sales.

This leads to a larger relative decline in total sales for the exporter compared to a non-exporter. For

domestic sales, however, exporters and non-exporters see the exact same relative decline, as long as

they face the same relative productivity shock a′
j/aj . This is because the productivity shock only

has a direct effect on domestic sales. There is no additional indirect effect via productive capability
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adjustments.

3.4 Equilibrium

I now provide a definition of an equilibrium for this model. I then show how to find an equilibrium.

Some of the formal statements of equilibrium conditions follow in the section below, after the

equilibrium definition.

Definition 1 For a given a CES elasticity σ, start-up costs fn, entry costs fni, iceberg trade costs

dni, cost parameters b, β and δ, and core productivity distributions Fi, an equilibrium for this model

is a set of prices pn(j), quantities qn(j), productive capabilities cj, active markets Mj, masses

of entrants Nn and active firms nn, incomes Xn and wages wn such that, for all firms j and all

countries n,

• Consumers are maximizing utility (1)

• Firms are maximizing profits (3)

• Expected profits prior to entry are zero in all countries (8)

• Labor supply Ln equals labor demand in all countries (9)

• Income equals expenditure in all countries, i.e. trade is balanced (10)

3.4.1 Optimal choice of active markets

The first step in finding the equilibrium is determining active markets Mj for each firm, for a given

set of demand factors αn. This is a high-dimensional combinatorial problem. Antràs, Fort, and

Tintelnot (2017) confront a similar problem when modeling input sourcing and use the algorithm

developed by Jia (2008). This works by first finding an upper bound on Mj by assuming the firm

is active in all N markets and determining whether leaving an individual market n would increase

firm profits. If so, as Jia (2008) shows, n cannot be part of the optimal set of markets. A similar

procedure yields a lower bound, starting from the firm being active in no markets at all and checking

where entry increases profits. To find the optimal Mj , one would then calculate profits across all

combinations of markets between the bounds (all combinations of the markets which are present in

both the lower and upper bound).
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In my setting, I can use a more computationally efficient algorithm for finding upper and lower

bounds, however. To find an upper bound, start by assuming the firm is active in all markets, and

set that as the initial M′
j . Then,

1. Calculate cj if the firm were active in M′
j and calculate variable profits in each market, that

is, sales in each market minus variable cost and the entry cost fni (ignoring the cost of cj)

2. Drop all markets where the firm would be earning negative variable profits from M′
j , and use

those where it makes weakly positive profits as the new M′
j

Iterate until the firm makes weakly positive variable profits in all markets in M′
j . This gives the

upper bound Mub
j . See Appendix E.3 for a proof that this is an upper bound.

To find a lower bound, start by assuming the firm is active only at Home, and set that as the

initial M′
j . (Since I assume fii = 0, firms will always be active in the Home market.) Then,

1. Calculate cj if the firm were active in M′
j and calculate variable profits in each market, that

is, sales in each market minus variable cost and the entry cost fni (ignoring the cost of cj)

2. Add all markets where the firm would be earning positive variable profits to M′
j , and use

these plus the markets in M′
j as the new M′

j

Iterate until the firm cannot enter additional markets where it would make weakly positive variable

profits when cj is chosen optimally under M′
j . This gives the lower bound Mlb

j . See Appendix E.2

for a proof that this is a lower bound.

In simulations, I find both bounds in many fewer steps than I can find the bounds from Jia

(2008). This is largely because finding the bounds from Jia (2008) always requires as many steps as

there are markets, whereas my bounding algorithms can often exclude or include multiple markets

in one step. I also find that my bounds are usually tighter than those from Jia (2008) for my setting.

Both of these factors speed up computation considerably.

Having found the bounds, I know the optimal set of active markets for all firms with Mlb
j = Mub

j .

In practice, I find this is the case for the majority of firms. For firms where the bounds do not coincide,

I could check all possible combinations of markets in between the two bounds. Unfortunately, unlike

Antràs et al. (2017), I find that the cardinality of that difference can be large. Though most firms

only need to decide between a few markets, some have over 100 different markets (on the order of

1030 combinations) to choose from. Therefore, I cannot feasibly solve the optimal market entry

problem by checking profit across all combinations of markets between the bounds.

24



Instead of searching over sets of active markets Mj and determining the optimal profit for each

set, I invert the problem. I search across cj (productive capability) to find optimal profits across

possible choices of productive capability. Determining Mj for a given cj is easy, since with a known

total productivity, market entry decisions just boil down to Melitz (2003): Firms enter markets in

which they make a variable profit (markets where sales exceed variable cost plus the entry cost).

The lower and upper bounds for markets the firm could be active in, Mlb
j and Mub

j , also yield lower

and upper bounds on cj , since as firms increase cj , they only ever enter additional markets; they do

not exit markets they are already active in. (Leaving a market the firm is making positive variable

profit in cannot increase its total profit for a given cj .) The cj the firm would optimally choose

if it were active in Mlb
j thus is a lower bound on the optimal cj , and similarly the optimal cj at

Mub
j yields an upper bound. I then simply conduct a grid search between those two bounds. Once

I have found the cj that maximizes profits, I get the associated set of activate markets Mj and

re-calculate the optimal cj for that set of markets, to further increase precision on the firm’s true

optimal choice of cj .

The core feature of my model that enables me to use more efficient bounds and a more efficient

algorithm for optimization between bounds is that the link between entering or exiting different

markets is due to an optimal firm decision on cj . This creates a way of sorting all markets along a

scalar dimension, cj , and do a grid search along that dimension.

3.4.2 Remaining equilibrium objects

To determine αn, I turn to the free entry condition for country i. It states that expected profits

before paying the fixed start-up cost fi, required to discover core productivity, should be zero. Let
¯
ai

denote the least productive firm that finds it profitable to operate in country i (instead of shutting

down after discovering aj), then the free entry condition is

fiwi =
∫ ∞

¯
ai

1
σ

(
µ

wi

ajcj
δ

)1−σ
 ∑

n∈Mj

d1−σ
ni αn

−

 ∑
n∈Mj

fni

wi − bβc
1
β

j wi dFi (aj) (8)

The integral cannot be solved analytically because it depends on the sets of active markets Mj

(directly but also, non-linearly, through cj). These sets are a function of aj and (being sets) do not

have an easily computable antiderivative. This condition nevertheless pins down the equilibrium αn

terms, given wages and sets of active markets.
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The full employment condition for country i yields the mass of entrants

Ni = µσ−1wσ
i Li∫∞

¯
ai

(
ajcδ

j

)σ−1∑
n∈Mj

d1−σ
ni αn dFi (aj)

(9)

which can be used to find the mass of active firms ni = [1 − Fi (
¯
ai)] Ni. To derive the gravity

equation, I first calculate the price index for country n as

Pn = µ

(
N∑

i=1
ni(dniwi)1−σ

∫ ∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)

) 1
1−σ

Plugging this into aggregate trade flows from i to n leads to the gravity equation

Xni =
ni(dniwi)1−σ ∫∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)∑N

k=1 nk(dnkwk)1−σ ∫∞

¯
ank

(
ajcδ

j

)σ−1
dFk (aj)

Xn (10)

where
¯
ani is the least productive firm from i selling in n. This looks similar to the typical gravity

structure, but the integrals of total productivity across producers selling from i to n again cannot

be solved analytically. The gravity equation nevertheless pins down wages, closing the model with

world GDP as the numeraire.

3.5 Estimation

3.5.1 Reduced form

I follow the common practice of assuming that core productivities come from a Pareto distribution

with shape parameter θ, shifted by a country-specific scale parameter T
1
θ

i , where Ti captures

differences in technology across countries. I simulate firm productivities using draws uj from a

uniform distribution on (0, 1], since

uj = Tia
−θ
j

is uniformly distributed and can be used to back out aj given the dispersion parameter and technology

shifters (Eaton, Kortum, & Kramarz, 2011).

Following Eaton et al. (2011), I estimate σ based on the ratio of firms’ sales to their variable

costs. Variable costs include the cost of labor, raw materials, fuel, water, electricity, goods for resale,

and other costs of production. I first calculate the mark-up for each firm and then use the average
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across firms to calibrate σ, which yields σ̂ = 3.016 with a standard error of 0.043. Table 8 shows

estimates for all parameters of the structural model.

Next, I turn to the parameters governing firms’ optimal productive capability, β and δ. Log

sales in firm j’s home market i can be written as

log (Si(j)) = I + log (αi) + (σ − 1) log (aj) − (σ + βδ − 1) log (wi) + (σ − 1) βδ log (S(j)) (11)

with I a constant. This shows that the elasticity of home market sales with respect to total sales

identifies βδ for a known σ. I make the simplifying assumption that β = δ to ease the computational

burden during the structural estimation described below. β and δ both discipline firms’ choices of

productive capability cj , and in simulations, equilibrium wages and welfare depend only on the

product of both parameters.

I can then directly estimate δ and β by regressing log home market sales on log total sales,

country-year fixed effects (to deal with αi and wi) and proxies for core productivity aj . I proxy

for core productivity using country-sector-year fixed effects (obviating the need for country-year

fixed effects), the manager’s years of experience, log initial number of employees, log number of

employees three years ago, whether the firm uses an international quality certification, whether the

firm experienced power outages, whether the firm competes against the informal sector, whether the

firms introduced a new product or service during the last three years, whether the firm introduced

a new process during the last three years, whether the firm had any R&D expenditures, whether

the firm is part of a larger firm, whether the firm was formal when it was founded, whether the firm

applied for an electricity connection over the last three years, whether the firm applied for a water

connection over the last three years, the firm age, and legal status indicators. To allow for more

flexibility in the estimation, I add all pairwise interactions between these productivity proxies, as

well as adding fourth-degree polynomials of each continuous variable.

I estimate (11) using only data on exporters, since purely domestically active firms mechanically

yield an elasticity of one (their home sales and total sales are identical); see Appendix Table 24

for a summary of the results. Since the estimate for βδ depends on σ̂, I obtain its standard error

via a pairs bootstrap, estimating σ and βδ for 999 bootstrap samples. I find δ̂β = 0.388 with a

standard error of 0.016, which results in δ̂ = β̂ ≈ 0.623. Regardless of the assumption that β = δ,

these parameter estimates satisfy the crucial restriction that β(σ − 1)δ < 1, ensuring an internal

solution for firms’ productive capability cj .
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Finally, I need to fix the productive capability cost shifter b. This is not separately identified

from the technology shifters Ti, because making productive capability cheaper has the same effect

as shifting core productivity. I assume that b = 1 to resolve this set identification problem. The

interpretation of this assumption is simply that workers can do production work and non-production

(e.g., administrative) work equally well.

3.5.2 Small open economy estimation

All remaining parameters — technology shifters Ti, the technology scale parameter θ, start-up costs

fi, iceberg costs dni and entry costs fni — need to be estimated via the method of simulated moments

(MSM). Estimating the model for the entire set of economies I have in my data is computationally

infeasible, however. Finding a single equilibrium of the model for many countries and with a large

number of simulated firms per country takes considerable time even with my efficient algorithm for

finding active markets.

Instead, I estimate the model for a small open economy Home (H), building on the theoretical

work by Demidova et al. (2022) and the estimation strategy in Bartelme et al. (2023). Specifically, I

solve (8) only for the Home price index αH , taking all other countries’ αn as given. I take the labor

force size LH from the World Development Indicators (World Bank, 2023).

I can estimate αn ≡ XnPσ−1
n for all other countries outside of the MSM estimation. To do that,

I run a gravity estimation using ITPD-E data on all countries but Home, similar to Bartelme et al.

(2023). I model all other countries’ economies as following the model in Melitz (2003), which means

their price indices are

Pn = σ

σ − 1

(
θF

θF − σ + 1

)− 1
θF

(
σ

Xn

) θF −σ+1
θF (σ−1)

(
N∑

i=1
Tini(dniwi)−θF (fniwi)

θF −σ+1
1−σ

)− 1
θF

where θF is the dispersion parameter for other economies’ productivity distributions — recall that

in the Melitz (2003) model, core and total productivity are identical. I take this parameter from

Melitz and Redding (2015) as θF = 4.25.19 Everything else in this expression is either data or a

parameter I can estimate via the reduced form approaches above, while the final term in parentheses
19 The technology scale parameters θ and θF capture the dispersion of core productivities, one for Home, the other for

all other countries. I take θF from the literature since good estimates of this parameter exist, but allow θ ̸= θF

because those existing estimates are for the dispersion in total productivity when aj completely captures firm
productivity, that is, when core and total productivity are identical. In my model, total firm productivity is aJ cδ

j ,
which has a different distribution than core productivity aj by itself. I therefore allow for a different dispersion of
core productivity.

28



can be recovered from a gravity estimation. Specifically, under Melitz (2003), trade flows from i to

n for all other countries are

Xni = Tini(dniwi)−θF (fniwi)
θF −σ+1

1−σ∑N
l=1 Tlnl(dnlwl)−θF (fnlwl)

θF −σ+1
1−σ

Xn (12)

I estimate this as

E
[

Xni

Xn

]
= exp

{
νi + ξn + C′

niβ
}

where νi and ξn are exporter and importer fixed effects and Cni are bilateral variables capturing

trade cost from n to i. These bilateral trade costs τni combine iceberg costs and entry costs

τni ≡ d−θF
ni f

θF −σ+1
1−σ

ni (13)

Following Bartelme et al. (2023), I use distance and an indicator for contiguity to approximate

this bilateral term. I estimate this gravity equation using pseudo-Poisson maximum likelihood

estimation to deal with zero trade shares (Santos Silva & Tenreyro, 2006), based on data for all

countries except Home (Bartelme et al., 2023). To minimize measurement error in the trade data,

I calculate average real flows across all years from 2000 to 2019 and use these in the estimation.

Appendix Table 25 shows the estimation results. I recover ∑N
i=1 Tini(dniwi)−θF (fniwi)

θF −σ+1
1−σ from

the importer fixed effect ξn. I can then calculate Pn and therefore αn for all countries except Home.

3.5.3 Method of simulated moments

I estimate the remaining parameters for Home — its technology shifter TH , the technology scale

parameter θ, start-up costs fH , and iceberg costs dnH and entry costs fnH between Home and

all other countries n — via MSM. For computational efficiency, I parameterize iceberg cost dnH

as a function of the same variables I include in the gravity equation, distance and the contiguity

indicator, as

dnH = 1 + exp {XnHγ}

where XnH also contains a constant term. For a guess of γ, I can then recover fnH from (13). (I

maintain the assumptions that dHH = 1 and fHH = 0.) Note that parameterizing dnH in this way
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is analogue to obtaining reduced from estimates of trade cost parameters from a gravity estimation

and feeding the results into the structural algorithm, as done for example in Antràs et al. (2017).

The parameters TH , θ, fH and γ are then estimated via MSM. The targeted moments are

Home’s share of exporters, exports from Home to each other country,20 the ratio of Home’s trade

with itself to its total exports, and the ratio of the 75th to the 25th percentile of domestic sales

(75/25 ratio). In simulated data, these moments are sufficient to identify all model parameters. To

minimize measurement error in the trade data, I again use average real flows across all years from

2000 to 2019 (the most recent year in the data), as I did when estimating (12).

While all parameters are identified by all moments, the share of exporters and ratio of Home’s

trade with itself to total exports are especially helpful for identifying fH and TH , the export flows

are especially useful for identifying γ and the 75/25 is needed to identify θ. Table 8 also shows

which variation in the data is especially important for identifying which parameters. I simulate the

model using one million firms.

3.6 Estimation results

I implement the estimation in Julia, using BlackBoxOptim to find an initial set of estimates and

refining those with the Nelder-Mead Subplex implementation from NLopt, an improved version of

the standard Nelder-Mead algorithm (Bezanson, Edelman, Karpinski, & Shah, 2017; Feldt, 2023;

Johnson, 2023; Rowan, 1990). I estimate the model using Zambia as the small open economy, Home,

because I have three rounds worth of Enterprise Surveys data (2007, 2013 and 2019) and because

it could reasonably be described as a small open economy. It has a ratio of total exports to total

domestic trade (trade with itself) of ≈ 58 percent, so trade makes up a large fraction of its economy,

and it exhibits roughly balanced trade: Its trade imbalance (exports minus imports) as a fraction of

its total trade (exports plus imports) is only six percent. Finally, when I estimate a gravity model

with and without including Zambia, results basically do not differ, highlighting that trade with

Zambia is small relative to global trade.

Table 8 shows the parameter estimates. I estimate a core productivity dispersion parameter

θ = 7.706, which is somewhat higher than, for example, the preferred estimate for the standard Melitz

(2003) of 4.25 from Melitz and Redding (2015). (A higher θ means a less dispersed distribution.)

That my model finds a larger value makes sense, however. In Melitz (2003), θ governs the dispersion
20 In order not to overweight a few large export destinations, I take the log of exports and add the fraction of countries

Home does not export to as an additional moment.
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of total productivity, whereas in my model, it governs only the dispersion of core productivity

aj , whereas total productivity ajcδ
j also depends on productive capability cj . In my model, firms’

productive capability choices multiply core productivity and lead to additional dispersion in total

productivity, so θ no longer captures the full dispersion of total productivity.

The model fits targeted moments well. Figure 8 shows a comparison of Zambian log exports and

model results, where I obtain a relatively high correlation coefficient of 0.68.21 In addition, Figure 9

shows Zambian log imports, which are not a targeted moment in the MSM estimation, compared

to the model simulation. The correlation here is even stronger, at 0.80. This is encouraging, since

imports depend on the iceberg cost parameters from the MSM estimation and other countries’

αn, which I estimate outside the model. That imports are well approximated suggests that the

theoretical model captures key relationships in the data, that the estimates of that model reproduce

those relationships for untargeted data moments, and that the MSM estimation and estimations

outside the model combine well. Comparisons of the data and estimated values for the other three

targeted moments are shown in Table 9. The model produces a share of exporters of 15.7 percent,

which is almost identical to the share of 15.2 percent in the data, a ratio of own trade to total

exports of 1.818, which is also essentially identical to the data moment of 1.819, and a 75/25 ratio

for domestic sales of 4.788, which is similar to the data moment of 3.596.

An important difference between my model and a standard Melitz (2003) model is that my

model generates a notably different distribution of total productivity, ajcδ
j . In Melitz (2003), total

productivity is drawn from a Pareto distribution and follows that exactly. In my model, total

productivity depends both on core productivity aj and productive capability cj . Figure 10 shows

the CDF of log core productivity and log total productivity. Log core productivity follows a Pareto

distribution. Log total productivity, however, is much more dispersed. It also exhibits jumps at

places where firms’ core productivity allows them to access export destinations, leading firms to

hire a chunk of additional productive capability.
21 Because I parameterize dnH as a linear function of bilateral variables, the model cannot perfectly match each trade

flow to every destination. To do that, I would need to estimate dnH separately for every destination, which would
add over 100 parameters to the model and greatly slow down estimation.
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4 Estimating the impact of climate change

4.1 Setup

This section uses a machine learning approach to estimate the impact of climate change on firm

sales. I need this to be able to calibrate counterfactual simulations, which I use below to explore

the policy implications of productive capability adjustments. The counterfactuals conduct policy

experiments under a climate change scenario, in which firms face reduced productivity (a worse

productivity distribution to draw from) due to climate change. Calibrating this climate change

scenario thus requires an estimate of how bad climate change is — how much should I reduce firm

productivity in this scenario? The machine learning estimates I develop in this section are crucial for

that calibration. I discuss the counterfactuals and specifics of the calibration in detail in Section 5.

To calibrate a counterfactual climate change scenario, I require a realistic estimate of the impact

of climate change on firms. Estimating the impact of climate change based on weather data is hard,

especially because my survey data do not cover the kind of time horizon over which climate change

itself becomes clearly visible. (A not uncommon problem in the economics of climate change, given

that economic data, especially in developing country contexts, often do not go back many decades.)

As a result, I need to use variation in weather to make inferences about the impact of changes in

climate (that is, changes in the distribution of weather). In practice, I need to estimate how firm

outcomes would change if firms had to cope with a new set of weather observations derived from

climate change projections.22

To formalize the problem of estimating the impact of future climate change on firm outcomes

based on current weather data, I observe firm outcomes yjt and weather data xjt,

yjt = g (xjt) + εjt (14)

Current weather data are drawn from the current climate, xjt ∼ Fcurrent. I want to estimate

Efuture [yjt] − Ecurrent [yjt]

where Ecurrent runs across weather from the current climate Fcurrent, but Efuture runs across weather

from the future climate Ffuture. That is, I want to estimate the change in the expected firm outcome
22 Note that this is markedly different to the reduced form estimations I used in Section 2, where I was simply

interested in capturing the first order impact of weather shocks, that is, weather variation within a given climate.
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resulting from a shift to the future climate. From the NASA NEX climate projections, I have a

sample of weather data from Ffuture. I do not, however, have data on future outcomes. Therefore, I

need to estimate g(·) and take an average over future weather projections to estimate Efuture [yjt].

This is a fairly common problem in the economics of climate change, and the solution I develop

here should be of general interest to researchers in that field.

The core challenge here is that g(·) could be a complicated function, since interactions between

the different weather variables in xjt as well as higher order powers of those variables could matter

for firm outcomes. I thus need an estimator that can flexibly estimate this function, yet provide

reliable inference on the mean shift I am interested in. Another potential problem is that this is

inherently an out of sample exercise, and one would accordingly want an estimation procedure to

perform well out of sample.

One solution would be to pick a relatively small set of weather variables and estimate this

relationship using OLS, perhaps including splines or other somewhat flexible functional forms.

(Selecting weather variables is necessary for OLS to work well in finite samples.) The choice

of weather variables to include is not obvious, however, and gives researchers a lot of leeway.

Furthermore, OLS is not optimized for out of sample performance.

Instead, I use the causal forest algorithm developed by Athey et al. (2019). Causal forests are

designed to incorporate high-dimensional data and can be tuned to protect against overfitting and

to improve out of sample performance. Causal forests are most often used to estimate heterogeneous

treatment effects, e.g., in the context of randomized controlled trials; I thank Stefan Wager and

Erik Sverdrup for suggesting to me that they could also be used to estimate and do inference on

unobserved means. All that is required to do this is a simple data manipulation. Let Djt = 1 for

data with observed outcomes (the ‘treatment’ group) and Djt = 0 for data without (the ‘control’

group — in my case, the NASA NEX weather projections). Keep yjt(1) = yjt for observed data

and set yjt(0) = 0 for unobserved outcomes. Then, the conditional average treatment effect for the

control group is

E [yjt(1) − yjt(0)|Djt = 0] = E [yjt − 0|Djt = 0] = E [yjt|Djt = 0]

which is the expected outcome among observations with unobserved outcomes; since I set Djt = 0

for weather projections from NASA NEX, this is equal to Efuture [yjt]. Causal forests provide efficient

cluster-robust confidence intervals for this expected outcome and can easily be estimated using the
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grf package in R (Tibshirani et al., 2023).

The final remaining problem is that I want to do inference on the shift in expected outcome

resulting from climate change, not on the new expected outcome itself. I solve this by de-meaning

outcomes prior to the estimation. As a result, the quantity the causal forest estimates becomes the

expectation of the de-meaned outcome yjt − ȳ among the set of observations with future weather

data (Djt = 0), which is

E [yjt − ȳ|Djt = 0] = Efuture [yjt] − Ecurrent [yjt]

This, however, is exactly the quantity I want to estimate. (See Appendix E.8 for a derivation.)

Causal forests thus provide an attractive solution to the problem of estimating the impact of climate

change on expected outcomes: They are able to incorporate high-dimensional weather data and

flexibly relate them to firm outcomes while still providing reliable inference, and they perform well

out of sample.

4.2 Firm adaptation to climate change

It is reasonable to assume that as the climate changes, firms try to adapt to the changing climate.

This can be addressed by including long-term moments of weather in the estimation. Adaptation

means reacting differently to an identical weather shock depending on the climatic environment.

For example, a firm that is used to an average yearly temperature of 28◦C may be severely affected

by a year that averages 30◦C. If over time, the average temperature rises to 30◦C, the same firm

may adapt to the changed climatic environment, for example by installing climate control measures

(Adhvaryu et al., 2019). It may then be less affected by a 30◦C year.23 To capture this, I include

longer-term moments of contemporary weather variables in the estimation, akin to Carleton et al.

(2022). Specifically, I include the mean and variance over the preceding 20 years for each weather

measure I use in the estimation.

The key shortcoming of this and any data-driven approach to the question of adaptation is that

I cannot capture how future adaptation differs from past adaptation. If firms become better able to

adapt to more extreme climates than they have been in the past, any data-driven approach will

underestimate the benefits of adaptation. If, on the other hand, climate change leads to a harsher
23 It is also conceivable that rising average temperatures could make firms more vulnerable to weather shocks, for

example if they negatively affect local labor markets (Santangelo, 2019) or due to impacts on the political and
social environment firms operate in. My solution here can take either effect into account.

34



business environment, for example by degrading local institutions, firms may become less able to

adapt to a changing climate. In that case, any data-driven approach to adaptation will overstate its

benefits. I am aiming to provide the best estimate of the impact of climate change I can, but I am

conscious of this inherent limitation. Any data-driven estimate of the impact of climate change is,

ultimately, a relatively ballpark guess, and may be off in either direction due to uncertainty around

future technology and other factors determining firms’ ability to cope with extreme conditions, such

as institutions.

4.3 Results

To capture the complexity of weather, I explicitly use both temperature and precipitation data for

this estimation. Of course, there are several different ways to summarize these over the course of a

given fiscal year, and I try to be parsimonious by including a large selection of such measures in

the estimation. Specifically, the weather measures I use include yearly averages, yearly averages

of daily values raised to the second, third, fourth, fifth and sixth power (that is, the second to

sixth non-centered moments of each variable), as used in Carleton et al. (2022), the corresponding

centered moments, and counts for days in specific intervals and above certain thresholds. As I

described above, I also include long-term means and variances to capture adaptation. I partial out

cluster fixed effects from all variables, including the outcome, before conducting the estimation. The

causal forest then flexibly estimates the response of firm outcomes to all of these weather measures,

including their interactions and higher order powers.

I focus on estimating the causal impact of climate change for Zambia. This matches the fact

that the structural estimation in Section 3 focuses on Zambia as a small open economy. To do this, I

estimate the relationship between weather and firm outcomes (14) on data for the whole Enterprise

Surveys sample, since causal forests perform better with a larger estimation sample, but I then

estimate the causal impact of climate change only for Zambian firms. That is, I obtain an estimate of

g (·) based on data for all firms, but I then estimate the change in outcomes Efuture [yjt] − Ecurrent [yjt]

only for Zambian firms.

Finally, I need to choose a reference period — a time at which I assess the impact of climate

change (i.e., when is ‘future’ above). I estimate the effects of climate change for the 2080s (2080–

2089). That is, for each SSP, I include projections from all 27 climate models and for each year in

the 2080s and estimate the causal effect on average sales. I choose this period because at that time,

differences in temperature between the three SSPs are clearly visible in the climate projections, as
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already seen in Figure 3.

Table 10 shows the estimated average decline in sales under the three different SSPs as well as

90 percent confidence intervals.24 I consistently estimate negative effects, with larger magnitudes

under more extreme climate change scenarios. The impacts range from a 7.8 percent decrease in

sales for the average Zambian firm under SPP1/2.6 to an 8.7 percent decrease under SSP2/4.5 to

an 18.7 percent decrease under SSP5/8.5. All three are significant at the ten percent level. I want

to highlight again that the confidence intervals I present incorporate two sources of uncertainty.

First, they of course reflect uncertainty in fitting the model (statistical uncertainty). Second, since

I combine data for many different model projections of future weather under each scenario, the

intervals are also affected by scientific uncertainty regarding the path of future weather. Both

contribute to the relatively wide confidence intervals around my estimates.

5 Counterfactuals

This section combines the model estimates from Section 3 with the estimated impacts of climate

change from Section 4 to construct a climate change baseline counterfactual. I then conduct policy

experiments under that baseline, evaluating the welfare impacts of different policies countries

could employ to counteract the negative impacts from climate change. I find that that productive

capability adjustments make (i) policies benefiting mostly larger firms and (ii) policies allowing

firms to adapt to climate change especially effective at countering the negative impacts of climate

change, compared to a model that ignores these adjustments.

5.1 Calibrating climate change baseline scenario

I first calibrate a counterfactual climate change baseline scenario. Since, as I showed in Section 2,

weather shocks affect firms primarily through the supply side, I model climate change as shifting

the core productivity distribution to the left. This has the effect of making all firms less productive.

In the model, this shift of the productivity distribution can be achieved by shrinking the technology
24 See Appendix E.9 for a derivation highlighting that, because I use log sales as an outcome, the causal forest

estimates can be interpreted as the expected percent change in sales, rather than the percent change in expected
sales. That is, the causal forest estimates an average of the percent decline in sales faced by each firm, rather than
estimating the percent decline in expected sales under climate change. Those two quantities coincide only if all
firms see the same percentage sales decline under climate change. If, for example, there were equally many small
and large firms in the economy, and small firms saw a 15 percent decline in sales while large firms saw a five percent
decline in sales, the expected decline in sales would be ten percent. The change in expected sales, however, would
be smaller, because larger firms see only a five percent decline in sales, so the percent change in expected sales
would be closer to five percent.
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parameter TH . The key issue is how far I need to shift the core productivity distribution. To

discipline the size of the shift, I calibrate the shift in TH to match the estimated impact of climate

change on sales from Section 4. That is, I calibrate a shift in TH that causes the average firm to

experience a real sales decline of 0.187 log points. I can then conduct policy experiments under this

climate change baseline scenario and calculate welfare impacts.

5.2 Estimating the impact of productive capability adjustments

To estimate the impact of productive capability adjustments on the welfare impact of different

policies, I compare counterfactual results for my model to a modified version of the model in

which I shut down these adjustments. That is, I construct a version of the model where I fix the

distribution of productive capability cj at the status quo and do not allow it to adjust when moving

to counterfactuals. I calibrate the climate change baseline scenario for this modified model in the

same way, finding the shift in TH that leads to sales losses matching the estimated impact of climate

change from Section 4.

Appendix Table 28 further shows a comparison between my model and the model of Melitz (2003),

estimated in the same way as my model.25 I find that the Melitz (2003) model has difficulty fitting

the Zambian data as well as my model. It especially struggles to account for the observed dispersion

of firm sales. This is because the Melitz (2003) model has to fulfill the parameter restriction

θ > σ − 1. Since in the Melitz (2003) model, θ governs the dispersion in total productivity, this

puts a lower bound on that dispersion, which in turn bounds the dispersion in firm sales. I also

find that the comparison between my model and Melitz (2003), instead of between my model and a

modified version with productive capability adjustments shut down, only exacerbates the results

I present here. That is, where I find that productive capability adjustments make a policy more

beneficial, the comparison with Melitz (2003) makes the difference even larger. Thus, both because

the Melitz (2003) model does not fit the data as well and to be conservative, I present comparisons

between my model with and without productive capability adjustments, rather than comparing my

model to Melitz (2003).
25 For more details on the estimated Melitz (2003) model, Appendix Table 26 shows parameter estimates, Appendix

Table 27 shows moment comparisons, and Appendix Figures 13 and 14 further show comparisons for log exports
and imports.
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5.3 Welfare impacts under climate change baseline

I first calculate the change in welfare resulting from moving to the climate change baseline scenario

for each model. (Note that this welfare change can also be thought of as the change in real GDP,

using the consumer price index to convert nominal to real GDP.) As the first row of Panel A in

Table 11 shows, I find that with productive capability adjustments, welfare declines by 13.2 percent.

Shutting down productive capability adjustments, I estimate a 19.5 percent welfare decrease. Note

that both models are calibrated so that the average firm sees an 0.187 log point decrease in sales

between the status quo and the counterfactual. The difference in welfare change is entirely due to

productive capability adjustments and their effects on the distribution of firm sales. Note also that I

keep the rest of the world at its status quo production levels, since I want to study the implications

for policy effectiveness in Zambia. All welfare level results, for example the impact of climate change

on welfare in this baseline scenario, are therefore upper bounds: If I also allowed climate change to

affect the rest of the world, Zambia would do worse as well.

5.3.1 Focusing on relative welfare impacts rather than welfare levels

In the following discussion, I focus heavily on relative welfare changes — what fraction of the welfare

gap between the status quo and the climate change baseline different policy interventions can close,

under my model compared to the model with productive capability adjustments shut down. I do

not discuss in as much detail the level differences in welfare between the two models under different

scenarios, for example, the level differences in welfare under the climate change baseline scenario. I

do so for two reasons.

The first reason is that I mostly care about which policies are most effective at counteracting

the effects of climate change. That is a question about relative welfare changes between the climate

change baseline scenario and different policy experiments departing from that baseline scenario. In

other words, it is a question about what fraction of the welfare loss under the baseline scenario

can be recovered using different policies. To briefly highlight why the level results for the climate

change baseline scenario are different, however, Figure 11 shows how each percentile of log real

sales shifts when moving from the status quo to the climate change baseline, with and without

productive capability adjustments. The figure shows the ratio of the new to the old percentile.

The first takeaway is that climate change is bad for all firms: All percentiles are shifted down in

both cases. With productive capability adjustments, however, smaller firms reduce their productive
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capability more than larger firms.26 As a result, larger firms manage to retain more of their status

quo sales. On the flip side, smaller firms see a larger decline in sales. Overall, this allows Zambian

firms to remain more productive and retain a better connection to export destinations, which leads

to a smaller welfare decline. The cost is that smaller firms are more severely affected by climate

change, compared to a model without productive capability adjustments.

The second reason to focus on relative changes in welfare rather than welfare levels is uncertainty.

As I explained in Section 4, my estimates of the impact of climate change cannot account for future

improvements or decreases in firms’ ability to adapt to climate change. There is, therefore, inherent

uncertainty about the exact level of welfare impacts. There is no such uncertainty, however, around

which policies become more effective at counteracting climate change damages as a result of taking

productive capability adjustments into account. Certain policies become more effective at reducing

losses from climate change, and they will be more effective at reducing those losses regardless of the

exact level of welfare decreases we face in the baseline climate change scenario. If firms have an

easier time to adapt to future climate change, for example due to technological innovation, welfare

losses will be smaller. If we want to reduce those losses, however, it will still be true that taking

productive capability adjustments into account makes certain policies more effective at doing so.

Those policies thus become more attractive than they would have been without taking productive

capability adjustments into account. (The same is true if future adaptation becomes harder, and

welfare losses in the baseline scenario become larger.)

5.4 Policy experiments under climate change baseline

I now turn to policy experiments under the climate change baseline. I focus on two sets of policy

experiments. For each of these, I compare welfare implications with and without productive

capability adjustments. The first set of experiments considers two policies targeting specific parts of

the firm size distribution: a policy benefiting mostly larger firms and a policy targeted at mid-sized

firms. The second set of policies considers adaptation to climate change and mitigation of climate

change.
26 The reason is that, while all firms are less productive, larger firms and especially exporters reach a larger market.

They thus want to retain more productive capability than smaller firms, which drives up wages and makes it hard
for smaller firms to retain their productive capability.
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5.4.1 Policies benefiting mostly large vs. mid-sized firms

The first set of policy experiments compares the effect of reducing iceberg trade costs to the effect of

reducing entry costs to foreign markets. Iceberg cost reductions especially benefit existing exporters,

especially large exporters, allowing them to expand sales to foreign markets. Iceberg cost reductions

therefore benefit mostly larger firms. Entry cost reductions mostly help marginal entrants to

international markets. Marginal entrants to a given foreign market are firms with a core productivity

which is almost high enough to make exporting to that destination profitable. When entry costs are

reduced, these firms can profitably start exporting. They are therefore the main beneficiaries of

entry cost reductions. These firms are smaller than existing exporters to the market, but larger

than non-exporters. I therefore call these marginal entrants mid-sized firms.

I consider a reduction in iceberg trade cost from Home to all other countries, dnH , by 10 percent

across the board. (This is an asymmetric reduction — I keep trade costs from all other countries

to Home, dHn, fixed.) The results are presented in row two of panel A in Table 11. Compared to

current welfare, when firms are allowed to adjust productive capability, Zambia now experiences

only a 10.4 percent decline compared to the status quo. This means lower variable trade costs

reduce the impact of climate change by 2.8 percentage points, or 21.4 percent (≈ 2.8/13.2) compared

to the climate change baseline. Without productive capability adjustments, Zambia still sees a

16.8 percent welfare decline under this scenario. This is a 2.7 percentage point or 13.7 percent

(≈ 2.7/19.5) improvement. Panel B of the same table summarizes these relative changes, showing

what fraction of the baseline welfare gap can be closed using each policy intervention.

Thus, I find that a little over a third of the welfare impact of iceberg cost reductions, or 36 percent

(≈ [21.4 − 13.7]/21.2), is due to productive capability adjustments. Another way to express this is

that productive capability adjustments make variable trade cost reductions 1.6 times (≈ 21.4/13.7)

more effective at counteracting the negative welfare impacts of climate change. A key reason for this

is that variable trade cost reductions allow very productive firms, which are already exporting, to

increase their productive capability. This drives up wages and actually hurts smaller firms, which are

not able to retain all of their productive capability, but increases efficiency overall. Figure 12 shows

the change in the distribution of real sales when moving from the climate change baseline scenario to

the iceberg cost reduction policy experiment. With and without productive capability adjustments,

smaller firms lose sales while larger firms increase sales. This is because trade cost reductions

benefit existing exporters, who hire additional production labor to expand their operations. This
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already puts upwards pressure on wages, which leads to lower employment and thus sales losses for

smaller firms. Productive capability adjustments exacerbate this: Larger firms purchase additional

productive capability and become more efficient, which puts additional pressure on wages, leading

small firms to lose some productive capability and thus losing additional sales. Since large firms

have considerably higher sales than smaller firms, the overall impact of this redistribution of sales is

positive for the Zambian economy.

The second policy change is a reduction in entry cost fnH by 10 percent across the board. The

results are presented in row three of Panels A and B in Table 11. Here, both with and without

productive capability adjustments, the effects are negligible. The difference between the two is also

small. The reason for the overall lower impact is that most of the benefit from entry cost reductions

goes to relatively less productive firms — marginal entrants which were not productive enough to

reach export destinations before, but now find it profitable to enter those markets. These firms do

hire additional productive capability as a result. Existing exporters, on the other hand, do not have

any incentive to hire additional productive capability, because the value of selling the marginal unit

of output to those markets does not change. This marked difference to the impact of iceberg cost

reductions, which do affect that marginal calculation, explains why entry cost reductions do not see

a difference in effectiveness with and without productive capability adjustments.

The takeaway from this first set of policy experiments is that large firms are especially important

in the context of productive capability adjustments. As a result, once we take those adjustments

into account, policies benefiting mostly larger firms become notably more effective at reducing the

negative welfare impact of climate change.

5.4.2 Adaptation vs. mitigation

The second set of experiments considers the implications for increased firm adaptation to climate

change, and of mitigating climate change itself. The adaptation experiment shifts the climate change

baseline TH up by ten percent. This simulates firms learning to cope with the changed climate,

and becoming more productive as a result. This could be due to improved, cheaper technology

allowing firms to adapt, or due to government infrastructure investments, for example in reliable

water supply infrastructure in the faced of increased risks of drought (Islam & Hyland, 2019).

The results are presented in row four of Panels A and B in Table 11. Compared to current

welfare, when firms are allowed to adjust productive capability, Zambia now experiences only a

12.2 percent decline compared to the status quo. This means adaptation reduces the impact of
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climate change by 1.0 percentage point, or 7.7 percent (≈ 1.0/13.2), compared to the climate change

baseline. Without productive capability adjustments, Zambia still sees an 18.6 percent welfare

decline under this scenario, an 0.9 percentage point or 4.9 percent (≈ 0.9/19.5) improvement.

Thus, I find that 36 percent (≈ [7.7 − 4.9]/7.7) of the welfare impact of adaptation to climate

change is due to productive capability responses. Another way to express this is that productive

capability adjustments make adaptation 1.6 times (≈ 7.7/4.9) more effective. The reason is straight-

forward: When firms become more productive due to improved adaptation, they respond by hiring

additional productive capability. This reinforces the productivity gains from adaptation. A model

which treats productive capability as fixed ignores this second order impact.

The mitigation scenario instead calibrates a new TH matching the estimated impact of climate

change under the SSP2/4.5 scenario. That is, the average firm under this scenario sees an 0.087 log

point decline in sales. This simulates achieving enough emissions reductions today to end up on a

more favorable climate change trajectory in the future.

The results are presented in row five of Panels A and B in Table 11. Compared to current

welfare, when firms are allowed to adjust productive capability, Zambia now experiences only a 6.4

percent decline compared to the status quo. This means mitigation reduces the impact of climate

change by 6.8 percentage points, or 51.5 percent (≈ 6.8/13.2), compared to the climate change

baseline. Without productive capability adjustments, Zambia still sees a 9.6 percent welfare decline

under this scenario, a 9.9 percentage point or 50.7 percent (≈ 9.6/19.5) improvement.

Here, the difference due to productive capability adjustments is again quite small — around

two percent (≈ [51.5 − 50.7]/51.5) of the welfare impact of mitigation of climate change is due to

productive capability responses, or expressed another way, those responses make mitigation 1.02

times (≈ 51.5/50.7) more effective.

It may seem counterintuitive that productive capability adjustments make adaptation so much

more effective at combating welfare losses from climate change, but barely affect the importance

of mitigation. The reason for this difference is that under the adaptation scenario, both models

shift core productivity up by the same factor. Under mitigation, however, both models shift core

productivity very differently: Instead of the severe SSP5/8.5 scenario with an 0.187 log point loss

in sales for the average Zambian firm, both models are now calibrated to the less severe SSP2/4.5

scenario with an 0.087 log point loss in sales. To achieve this lower loss in sales, both models shift

core productivity back up, by increasing TH . With productive capability adjustments, an upward

shift in core productivity is accompanied by firms purchasing more productive capability. This
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reinforces the upward core productivity shift, leads to a larger total productivity shift, and the

model calibration needs only a small shift in core productivity to reach the targeted change in sales.

Without productive capability adjustments, on the other hand, the entire shift in sales has to come

from shifting core productivity. The calibration for the model with fixed productive capability

thus shifts TH up more. This difference in shift size explains why the relative welfare impact of

mitigation is similar with and without productive capability adjustments.

The takeaway here is that a given shift in core productivity leads to a larger welfare impact

when firms adjust their productive capability. Adaptation means reducing the impact of climate

change on core productivity by a given factor. Adaptation policies thus become more effective

when firms increase complementary expenditures in response to them, generating positive feedback

effects. When thinking about mitigation, however, the two models back out differently sized shifts

in core productivity. Those lead to similar relative welfare impacts. Thus, productive capability

adjustments do not change the effectiveness of mitigating climate change.

6 Conclusion

In this paper, I show that weather shocks are, predominantly, supply shocks rather than demand

shocks for non-agricultural firms in poor countries. In the main reduced form result of the paper, I

further show that firms adjust expenditures on complementary inputs, such as rented machinery,

rented space, and non-production personnel, in response to these shocks. This is a rational response

to the shock, but further reduces firms’ effective productivity. I then develop and estimate an

international trade model featuring these input adjustments, and show that the model reproduces

my reduced form results. To calibrate climate change counterfactuals for the model, I need an

estimate of the impact of climate change on firm outcomes. I argue that causal forests are especially

well suited to this problem, and show how they can be adapted to solving it. I then construct

climate change counterfactuals based on these estimates. Policy simulations under this climate

change scenario show two key policy implications. First, policies benefiting larger firms become

more effective at counteracting the negative impacts of climate change. This is because large firms

are especially well placed to hire complementary inputs in response to such policies, leading to an

endogenous increase in large firms’ productivity. Second, facilitating firm adaptation to climate

change also becomes more effective at reducing welfare losses from climate change. This is because

adaptation allows firms to recover some of the productivity losses from climate change; in response,
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firms hire additional complementary inputs, leading to further productivity gains.

My results are important as we consider what policies both rich and poor countries can adapt to

help poor countries mitigate the impact of climate change. Some of these may be counterintuitive

looking only at reduced form results. I show, for example, that exporters see a larger negative

impact of weather shocks. This might have suggested that countries should focus more on domestic

production. As counterfactual simulations show, however, this protectionist intuition is wrong once

we take general equilibrium forces into account. The input adjustments I highlight in fact make

trade policy, which tends to especially benefit larger firms, more effective at combating the impact

of climate change than we might have assumed. This is especially true for countries with small

domestic markets. My results also highlight that as rich countries consider protectionist policies in

the wake of the Covid-19 pandemic (Goldberg & Reed, 2023), they should ensure those policies do

not impose outsized collateral damage on poor countries. Ill-targeted, such policies could in fact

greatly reduce poor countries’ ability to deal with climate change. This is especially concerning

given that climate change itself has a negative impact on trade networks (Huppertz, 2024).

Another point of caution concerns adaptation compared to mitigation. In this paper, I show

that input adjustments make adaptation policy more effective at counteracting the negative impacts

of climate change. I do not find a similar result for mitigation policy. This is, first and foremost, an

encouraging result — it means that we are better positioned than we might have hoped to cope

with future climate change. This result might also suggest that we can do less mitigation now, since

future adapation is in fact more effective. I want to stress, however, that there are good reasons to

think that prevention is preferable to relying on future adaptation. Across the counterfactuals I

explore, I find that, even compared to sizable trade cost reductions, climate change mitigation leads

to by far the largest reductions in welfare losses from climate change. It is a very effective tool in

reducing future welfare losses from climate change. Of course, trade policy itself can also play a key

role in climate change mitigation (Farrokhi & Lashkaripour, 2021).

Ultimately, climate change is already occurring and will continue to occur; mitigation efforts

may prevent some of it, but they will not prevent all of it. Poor countries will be severely affected

by climate change. Understanding what policies are especially suited for allowing these countries

to cope with it is a crucial task for contemporary social science. A better understanding of firm

responses to extreme weather is an important part of this, and this paper takes a first step in that

direction.
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Tables

Table 1: Firm summary statistics

Variable Count Mean P25 Median P75

Sales (real 2009 USD) 40,027 807,990.85 27,548.70 104,589.13 495,465.96
Number of employees 49,514 23.03 6.00 10.00 22.00
Initial number of employees 41,212 11.59 4.00 6.00 12.00
Exporter 48,962 0.12 0.00 0.00 0.00
Manufacturing 49,919 0.31 0.00 0.00 1.00
Internat. quality cert. 48,347 0.13 0.00 0.00 0.00
Manager experience (years) 49,080 13.73 7.00 12.00 20.00
Yearly mean temperature (◦C) 28,699 29.54 26.62 30.29 33.15
Yearly total precipitation (1,000 mm) 28,699 0.99 0.57 0.92 1.28

Note: Outcomes winsorized at the 95th percentile. The lower observation counts for weather variables stem from the fact that I
can only match firm and weather data for firms that have non-missing location information. I use the ES survey weights to ensure
representativeness.

Table 2: Effect of weather shocks on sales

Variable Log sales

Temperature index −0.223∗
[0.091]

Year FE Yes
Cluster FE Yes
Clusters 587
Observations 18,273

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm
cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to
ensure representativeness.
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Table 3: Effect of weather shocks by exporter status

Variable Log sales

Temperature index −0.125
[0.296]

Temperature index × Current exporter −0.094∗∗∗
[0.006]

Current exporter 1.603∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 586
Observations 17,975

Note: Current exporters are firms that export in the current fiscal year. Temperature index is an index combining mean temperature,
temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index is an average of location-specific
z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An 0.320 increase in the index is an
80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey
round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 4: Effect of weather shocks on domestic sales

Variable Log domestic sales

Temperature index −0.186
[0.118]

Temperature index × Current exporter −0.071∗∗
[0.013]

Current exporter 0.886∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 584
Observations 17,250

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm
cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to
ensure representativeness.

51



Table 5: Effect of weather shocks on productive capability and sales per employee

Variable Log productive capability Log sales/employee

Temperature index −0.049
[0.753]

−0.036
[0.722]

Temperature index × Current exporter −0.117∗∗∗
[0.001]

−0.048∗∗
[0.019]

Current exporter 1.233∗∗∗
[0.000]

0.631∗∗∗
[0.000]

Year FE Yes Yes
Cluster FE Yes Yes
Clusters 377 586
Observations 8,003 17,870
Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Productive capability expenditures
combine the cost of communications, sales (including sales staff), transportation, and rent for buildings, equipment and land. Standard
errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES
survey weights to ensure representativeness.

Table 6: Effect of weather shocks on domestic sales, mediation via productive capability

Variable Log domestic sales

Temperature index −0.182
[0.139]

Temperature index × Current exporter 0.041
[0.438]

Current exporter 0.179
[0.112]

Log productive capability controls Yes
Year FE Yes
Cluster FE Yes
Clusters 375
Observations 7,447

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Log productive capability controls
comprises log productive capability expenditures fully interacted with exporter status and the temperature index. I do not show
the coefficients on these endogenous regressors. (DM) indicates the variable is de-meaned to center interaction terms. Productive
capability expenditures combine the cost of communications, sales (including sales staff), transportation, and rent for buildings,
equipment and land. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey round.
p-values in brackets. I use the ES survey weights to ensure representativeness.
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Table 7: Exporters compared to non-exporters

Variable Mean non-exporter Mean exporter p-value

Sales (real 2009 USD) 657,600.35 1,772,946.67 0.000***
Number of employees 19.82 43.67 0.000***
Initial number of employees 10.49 18.82 0.000***
Manufacturing 0.28 0.47 0.000***
Internat. quality cert. 0.10 0.28 0.000***
Manager experience (years) 13.47 15.32 0.002***
Yearly mean temperature (◦C) 29.53 29.65 0.467
Yearly total precipitation (1,000 mm) 0.99 0.98 0.476

Note: p-values are for the null that the difference between exporters and non-exporters is zero. The underlying standard errors are
robust to heteroskedasticity.

Table 8: Parameter estimates for structural model

Parameter Source/identifying variation Estimate

Panel A: Reduced form and data

σ Sales, variable cost 3.016
(0.043)

βδ Total on domestic sales regression (11) 0.384
(0.016)

Panel B: Structural estimation

θ 75/25 ratio for domestic sales 7.687
THwH Ratio of Home sales to Foreign sales 0.000
fHwH Fraction of exporters 0.008
γ0

Export flows
-1.564

γdist 0.605
γcontig 0.402

Note: Standard errors in parentheses where available. I present the minimum core productivity TH and start-up cost fH times the
estimated Home wage wH to convert them into an easier to interpret unit, millions of USD, rather than presenting them in units of
labor. The three components of γ are the intercept γ0, the coefficient on log distance γdist and the coefficient on the contiguity
indicator γcontig.

Table 9: Moment comparisons for structural model

Moment Data Model

Fraction exporting 0.152 0.153
Ratio own trade/total exports 1.819 1.504
75/25 domestic sales ratio 3.596 4.806

Note: 75/25 ratio is the ratio of the 75th to the 25th percentile. The other set of targeted moments, log exports, is shown in Figure 8.
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Table 10: Causal forest estimates of the impact of 2080s climate change on Zambian firms

Scenario Change in log sales

SSP1/2.6 −0.078
(−0.127, −0.028)

SSP2/4.5 −0.087
(−0.131, −0.042)

SSP5/8.5 −0.187
(−0.271, −0.102)

Note: Each row presents the average firm’s loss in sales under the 2080s climate change trajectory for a given SSP. Standard errors
clustered by firm cluster. 90 percent confidence intervals in parentheses.

Table 11: Counterfactual change in welfare

Scenario Full model Fix cj

Panel A: Welfare gap compared to status quo

Climate change baseline -0.132 -0.195
Iceberg cost reduction -0.104 -0.168
Entry cost reduction -0.132 -0.195
Adaptation -0.122 -0.186
Mitigation -0.064 -0.096

Panel B: Fraction of welfare gap closed

Climate change baseline 0.000 0.000
Iceberg cost reduction 0.214 0.137
Entry cost reduction 0.000 0.000
Adaptation 0.077 0.049
Mitigation 0.515 0.507

Note: Each column presents results for a different model. Full model shows results for my full model and Fix cj shows results for my
model with productive capability adjustments shut down (fixing the distribution of productive capability at the status quo). In
panel A, each row presents the relative change in welfare under a different counterfactual scenario compared to the status quo. For
example, a value of -0.1 means a ten percent decrease in welfare. These welfare changes are also changes in real GDP, using the
optimal consumer price index to convert nominal to real values. In panel B, each row presents what fraction of the welfare gap under
the climate change baseline scenario a given policy intervention manages to close. For example, a value of 0.1 means that ten percent
of the baseline welfare gap has been closed. Climate change baseline uses the technology parameter TH to match the estimated impact
of climate change on the Zambian economy. Starting from that scenario, iceberg cost reduction reduces variable trade costs from
Zambia to all other markets by ten percent, while entry cost reduction reduces entry cost for Zambian firms to all other markets by
ten percent. Adaptation shifts the technology parameter TH up by ten percent, whereas mitigation calibrates a new counterfactual
scenario matching the climate change impact under SSP2/4.5.
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Figures

Figure 1: Locations of firms and firm clusters across Africa and South Asia

Note: Each dot is either the location of a single firm or the location of a firm cluster. Clusters appear if several firms were recorded
as having the same location in the Enterprise Surveys data or if I was able to determine the firms’ location via geolocation methods
based on the city firms are located in.
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Figure 2: Maximum temperature on April 24, 1991

Note: The figure shows temperature from the Berkeley Earth dataset.
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Figure 3: Yearly average daily maximum temperature across climate change scenarios

Note: The figure shows yearly averages of daily maximum temperatures. The climate change projections are adjusted for differences
in baseline temperature means for each day of the year, as described in Appendix C.

Figure 4: Histogram of temperature index after partialling out cluster FE

Note: The figure shows the temperature index after partialling out cluster fixed effects. This is the same identifying variation used in
the regressions I estimate — the variation remaining in the standardized temperature index after cluster fixed effects are taken into
account. Dashed lines indicate the 20th and 80th percentile. Observations without variation after partialling out FE not shown.

57



Figure 5: Graphical intuition for effect of supply shock on sales
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Note: The figure shows a basic open economy intuition for how a supply shock (increase in marginal cost) affects domestic and
international sales. MC shows the firm’s marginal cost, MR shows its marginal revenue.

Figure 6: Distribution of yearly average daily maximum temperature, 2005–2015, for actual data
and climate change projections

Note: The figure shows the empirical CDF of the yearly average of daily maximum temperatures across firms. The climate change
projections are adjusted for differences in baseline temperature means for each day of the year, as described in Appendix C.
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Figure 7: Distribution of yearly average daily maximum temperature, 2005–2015 for actual data
and 2085–2095 for climate change projections

Note: The figure shows the empirical CDF of the yearly average of daily maximum temperatures across firms. The climate change
projections are adjusted for differences in baseline temperature means for each day of the year, as described in Appendix C.

Figure 8: Zambian log exports vs. model simulation

Note: Log exports are a targeted moment, together with the fraction of countries with zero exports.
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Figure 9: Zambian log imports vs. model simulation

Note: Log imports are an untargeted moment.
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Figure 10: Log total productivity compared to log core productivity

Note: The figure shows log total productivity aj cδ
j , which depends on core productivity aj and productive capability cj . Log core

productivity also shown for comparison.
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Figure 11: Change in log real sales under climate change baseline scenario

Note: The figure shows the change in real sales at each percentile of the real sales distribution. I calculate the ratio of each percentile
in the climate change baseline scenario to the same percentile in the status quo. Values less than one thus indicate that the percentile
shifts to the left. The grey dotted line at 1.0 indicates no change.
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Figure 12: Change in log real sales with iceberg cost reduction

Note: The figure shows the change in real sales at each percentile of the real sales distribution. I calculate the ratio of each percentile
in the iceberg trade cost reduction scenario to the same percentile in the climate change baseline scenario. Values less than one thus
indicate that the percentile shifts to the left. The grey dotted line at 1.0 indicates no change.
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Appendix A Additional tables

A.1 Additional descriptive statistics

Table 12: Number of observations by country

Country Total Non-missing sales Non-missing location

India 8,808 8,505 4,540
Nigeria 4,234 3,759 2,655
Bangladesh 2,859 1,352 2,157
Kenya 2,359 2,172 1,967
Pakistan 2,027 564 1,083
South Africa 2,022 2,003 1,272
Zambia 1,747 1,643 1,739
Ethiopia 1,455 1,265 1,348
Uganda 1,225 1,016 986
Tanzania 1,185 912 901
Congo, Dem. Rep. 1,176 1,030 403
Ghana 1,161 1,013 467
Zimbabwe 1,153 570 449
Senegal 1,061 922 809
Mozambique 993 993 479
Mali 977 849 953
Madagascar 899 721 591
Afghanistan 890 552 350
Namibia 872 652 446
Nepal 833 820 360
Rwanda 802 569 354
Cote d’Ivoire 763 700 413
Angola 756 739 529
South Sudan 669 620 181
Cameroon 640 627 314
Malawi 622 331 368
Sudan 605 227 605
Sri Lanka 578 532 0
Botswana 576 546 290
Bhutan 486 241 250
Eswatini 445 431 439
Burundi 415 411 0
Mauritius 389 376 28
Guinea 369 303 35
Mauritania 369 334 157
Burkina Faso 345 333 0
Gambia, The 315 313 0
Chad 291 143 147
Lesotho 289 143 285
Sierra Leone 287 143 143
Niger 285 108 145
Liberia 281 133 133
Togo 267 126 134
Benin 255 132 136
Eritrea 178 0 0
Guinea-Bissau 155 153 0
Cabo Verde 152 0 0
Central African Republic 145 0 139
Gabon 134 0 0
Congo, Rep. 120 0 0

Note: Total shows the total number of firms in the sample for each country. Non-missing sales shows the number of firms with
non-missing real total sales data. Non-missing location shows the number of firms with non-missing location data.
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A.2 Clustering distance choice

Table 13: Moran test for spatial correlation

Clustering distance p-value Adjusted p-value Fraction included

0.25 km 0.116 1.000 0.211
0.5 km 0.686 1.000 0.415
1.0 km 0.535 1.000 0.627
2.5 km 0.147 1.000 0.767
5.0 km 0.582 1.000 0.782

10.0 km 0.130 1.000 0.798
15.0 km 0.161 1.000 0.801
20.0 km 0.422 1.000 0.803
25.0 km 0.440 1.000 0.814
50.0 km 0.678 1.000 0.827

100.0 km 0.605 1.000 0.832
200.0 km 0.757 1.000 0.847
500.0 km 0.500 1.000 0.979

Note: The Moran test is for the null that errors from a regression of log sales on a temperature index are not correlated across
clusters. The index combines mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C
(89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of
reach variable). Standard errors clustered by firm cluster. Adjusted p-values are adjusted for multiple hypothesis testing using the
Holm-Bonferroni correction. Fraction included is the fraction of firms with non-missing location information which are included in any
cluster.
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A.3 Specification and survival robustness checks

Table 14: Effect of weather shocks on sales including lead of temperature index

Variable Log sales

Temperature index −0.220∗
[0.080]

Temperature index lead −0.037
[0.790]

Year FE Yes
Cluster FE Yes
Clusters 587
Observations 18,273

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Temperature index lead is the same
index for the next year, i.e., a one-year lead of the index. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th

percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 15: Checks for survival bias

Variable Zero sales Current exporter

Temperature index −0.004
[0.405]

−0.036∗
[0.085]

Year FE Yes Yes
Cluster FE Yes Yes
Clusters 595 592
Observations 22,458 21,810

Note: Zero sales is an indicator for firms reporting sales below the first percentile of sales. (I do not use literally zero sales because I
have only six such observations.) Current exporters are firms that export in the current fiscal year. Temperature index is an index
combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The
index is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of reach variable).
An 0.320 increase in the index is an 80th percentile weather shock. p-values in brackets. I use the ES survey weights to ensure
representativeness.
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A.4 Alternative specifications for exporter effect

Table 16: Effect of weather shocks by exporter status, no year FE

Variable Log sales

Temperature index −0.004
[0.938]

Temperature index × Current exporter −0.094∗∗∗
[0.006]

Current exporter 1.630∗∗∗
[0.000]

Cluster FE Yes
Clusters 586
Observations 17,975

Note: Current exporters are firms that export in the current fiscal year. Temperature index is an index combining mean temperature,
temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index is an average of location-specific
z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An 0.320 increase in the index is an
80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey
round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 17: Effect of weather shocks by exporter status, most reliable numbers only

Variable Log sales

Temperature index −0.120
[0.307]

Temperature index × Current exporter −0.069
[0.216]

Current exporter 1.473∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 429
Observations 6,161

Note: This estimation uses only data that came directly from firm records, as opposed to being estimates, for example. Current
exporters are firms that export in the current fiscal year. Temperature index is an index combining mean temperature, temperature
variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for
each variable (using the 20-year mean and standard deviation of reach variable). An 0.320 increase in the index is an 80th percentile
weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values
in brackets. I use the ES survey weights to ensure representativeness.
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A.5 Alternative indicators for exporter status

Table 18: Exporter effect using past exporter status

Variable Log sales

Temperature index 0.119
[0.358]

Temperature index × Past exporter −0.074∗∗
[0.036]

Past exporter 1.208∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 587
Observations 18,273

Note: Past exporter is an indicator for firms reporting a past year as their first year of exporting. Temperature index is an index
combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index
is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An
0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at
the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 19: Exporter effect using ever exporter status

Variable Log sales

Temperature index 0.141
[0.269]

Temperature index × Ever exporter −0.079∗∗
[0.022]

Ever exporter 1.384∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 586
Observations 17,975

Note: Ever exporter is an indicator for firms which exported in the past and/or report international sales this year. Temperature
index is an index combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C
(89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation
of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm cluster.
Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure
representativeness.
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Table 20: Effect on continuing, discontinuing, and first-time exporters

Variable Log sales

Temperature index −0.143
[0.178]

Temperature index × Continuing exporter −0.097∗∗∗
[0.005]

Temperature index × Discontinuing exporter −1.451∗∗∗
[0.002]

Temperature index × First-time exporter 0.092
[0.573]

Year FE Yes
Exporter status FE Yes
Cluster FE Yes
Clusters 586
Observations 17,975

Note: Continuing exporters are firms that exported in the past and do so in the observed year. Discontinuing past exporters are firms
that exported in the past and are not doing so in the observed year. First-time exporters did not export in the past, but are doing so
now. Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm
cluster. Outcomes winsorized at the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to
ensure representativeness.
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A.6 Additional regressions

Table 21: Effect of weather shocks on cost of repurchasing machinery

Variable Log value of re-purchasing machinery

Temperature index 0.121
[0.656]

Temperature index × Current exporter 0.035
[0.464]

Current exporter 1.635∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 412
Observations 6,858

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Outcomes winsorized at the 95th

percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.

Table 22: Effect of weather shocks on domestic sales among firms with non-missing data for log
productive capability

Variable Log domestic sales

Temperature index −0.157
[0.346]

Temperature index × Current exporter −0.070
[0.168]

Current exporter 1.039∗∗∗
[0.000]

Year FE Yes
Cluster FE Yes
Clusters 375
Observations 7,447

Note: This estimation uses only firms with non-missing observations for log productive capability. Temperature index is an index
combining mean temperature, temperature variance and the number of days with temperatures exceeding 32◦C (89.6◦F). The index
is an average of location-specific z-scores for each variable (using the 20-year mean and standard deviation of reach variable). An
0.320 increase in the index is an 80th percentile weather shock. Standard errors clustered by firm cluster. Outcomes winsorized at
the 95th percentile for each survey round. p-values in brackets. I use the ES survey weights to ensure representativeness.
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A.7 Reduced form parameter estimation for structural model

Table 24: Total on domestic sales regression

Variable Trade flows

Log sales 0.816∗∗∗
[0.000]

Manager’s years of experience 0.037∗∗∗
[0.000]

Log initial no. of employees 0.333∗∗∗
[0.000]

Log no. of employees 3 yrs. ago −0.668∗∗∗
[0.000]

International certification 0.124∗∗∗
[0.000]

Had power outage 0.060∗∗∗
[0.000]

Competes against informal sector −0.103∗∗∗
[0.000]

Introduced new product 0.238∗∗∗
[0.000]

Introduced new process 0.174∗∗∗
[0.000]

Had RD expenditure −0.131∗∗∗
[0.000]

Part of larger firm 0.133∗∗∗
[0.000]

Formal when founded 0.183∗∗∗
[0.000]

Applied for grid connection −0.085∗∗∗
[0.000]

Applied for water connection −0.103∗∗∗
[0.000]

Firm age 0.021∗∗∗
[0.000]

4th degree polynomials Yes
Pairwise interactions Yes
Country-sector (ISIC4)-year FE Yes
Observations 4,160

Note: Fourth degree polynomials are included for all continuous variables besides log sales. Pairwise interactions include only level
variables, not variables raised to a power as part of the polynomials. p-values in brackets. I use the ES survey weights to ensure
representativeness. The underlying standard errors are robust to heteroskedasticity.
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Table 25: Gravity estimation results

Variable Trade flows

Log distance −1.167∗∗∗
[0.000]

Contiguous 0.661∗∗∗
[0.000]

Importer FE Yes
Exporter FE Yes

Note: Estimated using pseudo-Poisson maximum likelihood estimation to deal with zero trade shares (Santos Silva & Tenreyro, 2006).
The coefficient on log distance therefore represents an elasticity. Based on data for all countries except Zambia (Bartelme, Lan, &
Levchenko, 2023). p-values in brackets. I use the ES survey weights to ensure representativeness. The underlying standard errors are
robust to heteroskedasticity.
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A.8 Results for Melitz (2003) estimation

Table 26: Parameter estimates for Melitz (2003)

Parameter Source/identifying variation Estimate

Panel A: Reduced form and data

σ Sales, variable cost 3.016
(0.043)

Panel B: Structural estimation

θ 75/25 ratio for domestic sales 5.557
THwH Ratio of Home sales to Foreign sales 0.000
fHwH Fraction of exporters 0.196
γ0

Export flows
7.719

γdist -9.796
γcontig 6.284

Note: Standard errors in parentheses where available. I present the minimum productivity TH and start-up cost fH times the
estimated Home wage wH to convert them into an easier to interpret unit, millions of USD, rather than presenting them in units of
labor. The three components of γ are the intercept γ0, the coefficient on log distance γdist and the coefficient on the contiguity
indicator γcontig.

Table 27: Moment comparisons for structural estimation of Melitz (2003)

Moment Data Model

Fraction exporting 0.152 0.148
Ratio own trade/total exports 1.819 1.805
75/25 domestic sales ratio 3.596 1.569

Note: 75/25 ratio is the ratio of the 75th to the 25th percentile. The other set of targeted moments, log exports, is shown in Figure 13.
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A.9 Additional counterfactual results

Table 28: Counterfactual change in welfare compared to Melitz (2003)

Scenario Full model Melitz (2003)

Panel A: Welfare gap compared to status quo

Climate change baseline -0.132 -0.205
Iceberg cost reduction -0.104 -0.205
Entry cost reduction -0.132 -0.199
Adaptation -0.122 -0.192
Mitigation -0.064 -0.102

Panel B: Fraction of welfare gap closed

Climate change baseline 0.000 0.000
Iceberg cost reduction 0.214 0.000
Entry cost reduction 0.000 0.029
Adaptation 0.077 0.064
Mitigation 0.515 0.505

Note: Each column presents results for a different model. Full model shows results for my full model and Melitz (2003) shows results
for the model of Melitz (2003). In panel A, each row presents the relative change in welfare under a different counterfactual scenario
compared to the status quo. For example, a value of -0.1 means a ten percent decrease in welfare. These welfare changes are also
changes in real GDP, using the optimal consumer price index to convert nominal to real values. In panel B, each row presents what
fraction of the welfare gap under the climate change baseline scenario a given policy intervention manages to close. For example,
a value of 0.1 means that ten percent of the baseline welfare gap has been closed. Climate change baseline uses the technology
parameter TH to match the estimated impact of climate change on the Zambian economy. Starting from that scenario, iceberg cost
reduction reduces variable trade costs from Zambia to all other markets by ten percent, while entry cost reduction reduces entry cost
for Zambian firms to all other markets by ten percent. Adaptation shifts the technology parameter TH up by ten percent, whereas
mitigation calibrates a new counterfactual scenario matching the climate change impact under SSP2/4.5.
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Appendix B Additional figures

B.1 Moment comparisons for Melitz (2003) estimation

Figure 13: Zambian log exports vs. model simulation from Melitz (2003) estimation

Note: Log exports are a targeted moment, together with the fraction of countries with zero exports.
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Figure 14: Zambian log imports vs. model simulation from Melitz (2003) estimation

Note: Log imports are an untargeted moment.
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Appendix C Climate data processing

For firms that, due to their offset locations, ended up with interpolated data from CHIRPS or

BKE, I also interpolate projection data in the same way to ensure that observed changes in weather

are due to differences in weather over time at the same location, rather than weather data and

projections coming from different locations. Since I combine weather data (CHIRPS and BKE) with

the NEX-GDDP-CMIP6 projections, I need to take care to remove underlying differences in average

weather at baseline, to isolate the effect of changes in weather patterns over time (Auffhammer et al.,

2013). To this end, I also download historical runs of each model for the period from 1980–2014.

This gives me an overlapping period of 34 years to assess existing biases across models and correct

for them. For both temperature and precipitation, I calculate the average value for each day of the

year (e.g., January 1) across this overlapping period and subtract the difference from projection

data, as recommended by Auffhammer et al. (2013). For one of the climate models, TaiESM1,

temperature jumps significantly between the historical run and climate change projection, making it

impossible to adjust for bias and making me question the validity of the projection. I thus exclude

the TaiESM1 projections for both temperature and precipitation from my analyses. No other model

has this issue.
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Appendix D Possible mechanisms for weather effect on productiv-

ity

My results show an effect of weather on output, which I interpret as evidence of a net productivity

reduction because of the differential impact on exporters. This begs the question, through what

mechanism does weather affect firm productivity? I will not be able to determine a single channel

through which this happens, and I think it is reasonable to assume that multiple channels are

important here. There is a large literature on productivity effect of weather in different contexts,

highlighting multiple ways in which weather can decrease productivity.

For example, Adhvaryu et al. (2019) find direct evidence for lower worker productivity on

assembly lines during hot days, exacerbated by heat-generating lighting, Somanathan et al. (2021)

find lower worker productivity in Indian manufacturing firms on hot days, and Zhang et al. (2018)

find reduced total factor productivity in Chinese manufacturing during hotter years. In their

wide-ranging literature summary, Carleton and Hsiang (2016) note negative impacts of temperature

on labor supply, which are also found to be important in Somanathan et al. (2021) and Santangelo

(2019). If workers supply less labor at each wage level, for example because they need to work on

their own subsistence farms, that has an effect similar to lower worker productivity — to produce

a given quantity, the firm needs to incur higher labor cost. These arguments may pertain more

to employees in lower skilled jobs, but as Carleton and Hsiang (2016) note, previous research also

finds that extreme temperatures reduce cognitive performance, e.g., lowering math test scores.

With imperfect climate control, even workers in an office setting would face lower productivity

due to extreme heat. Through this cognitive performance channel, temperature can reduce worker

productivity even for firms in the service sector, for example. Ultimately, working in extreme

heat makes it hard for anyone to perform their best, is at best unpleasant and at worst outright

dangerous.

Table 29 shows evidence that several of these channels are present in my data, albeit the estimates

are all somewhat noisy. For example, I see sales per employee declining by 2.4 percent following an

80th percentile weather shock, which is a direct indication that labor productivity is reduced. I also

see firms’ total operating hours increasing by 4.3 percent in response to a 80th percentile weather

shock. Since firms’ sales are falling, this suggests lower output per hour, as for example found by

Adhvaryu et al. (2019). I further find that hotter years lead to more power outages, with an 80th

percentile weather shock increasing the likelihood of an outage by 1.7 percentage points (again, the
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estimate is somewhat noisy). Outages can directly decrease firm productivity (Hardy & McCasland,

2019).

Table 29: Indications of productivity impact

Variable Log sales/employee Log weekly hours Outage

Temperature index −0.074
[0.491]

0.142∗
[0.088]

0.065∗
[0.075]

Year FE Yes Yes Yes
Cluster FE Yes Yes Yes
Clusters 587 522 595
Observations 18,133 11,837 22,327

Note: Temperature index is an index combining mean temperature, temperature variance and the number of days with temperatures
exceeding 32◦C (89.6◦F). The index is an average of location-specific z-scores for each variable (using the 20-year mean and standard
deviation of reach variable). An 0.320 increase in the index is an 80th percentile weather shock. Each column shows results for a
different outcome. Log weekly hours is the log of the firm’s total operating hours per week. Log female employment is the log of the
firm’s number of female employees. Outage is an indicator for whether the firm experienced power outages. Outcomes winsorized at
the 95th percentile, except indicators. p-values in brackets. I use the ES survey weights to ensure representativeness.
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Appendix E Proofs and derivations

E.1 Optimal c

The FOC for the optimal distribution network gives

0 = δ
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j
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dni
1−σαn
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β
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E.2 Proof that Mlb
j is a lower bound

I need to show that there is no set of markets Mcand
j included in Mlb

j such that exiting these

markets would increase firm profits. I first show that there is no single market included in the lower

bound that the firm could profitably exit, and then show that this also implies there is no set of

markets included in the lower bound that the firm could profitably exit.

Suppose firm j is active in markets Mj ⊇ Mlb
j with cj optimally chosen and considers whether

exiting a market n ∈ Mlb
j could increase its profit. Let M̃j = Mj \ {n} and let c̃j be the corre-

sponding optimal productive capability. Since cj is increasing in |Mj |, I know that c̃j < cj . I also

know that at the iteration of the algorithm during which n was added to Mlb
j the firm was active in

a set of markets M′
j not including n and would have made a variable profit in n at the optimal

c′
j . Since the algorithm only ever adds markets at each iteration and Mj ⊇ Mlb

j I know that every

market in M′
j must also be in M̃j = Mj \ {n}. I therefore have M′

j ⊆ M̃j which implies c′
j ≤ c̃j .

That is, the firm made a variable profit in n at some c′
j ≤ c̃j < cj . Therefore, it will certainly make

a variable profit in n at cj or c̃j , and variable losses incurred in n cannot be the reason to exit it

(since there are none). Exiting n could still increase the firm’s total profit because at M̃j , the fact

that c̃j < cj decreases its cost of acquiring productive capability. But there is nothing stopping

the firm from choosing c̃j at Mj while still incurring a variable profit in n. Since at Mj , the firm

instead optimally chooses cj , deviating to c̃j cannot increase profits. Therefore, the firm would
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never want to exit any market n ∈ Mlb
j .

This argument extends to exiting a set of markets Mcand
j that the algorithm included in Mlb

j ,

because cj depends only on the total effective demand of all markets in Mcand
j (not on their indices,

for example). The firm would make a profit in any market n ∈ Mcand, so direct losses cannot be

the reason to exit. For the firm’s choice of cj , exiting several markets at once is just like exiting one

large market, because cj depends only on the sum of αn across all markets the firm is active in. For

the same reason as above, choosing a different cj cannot increase profits.

E.3 Proof that Mub
j is an upper bound

I need to show that there is no set of markets Mcand
j excluded from Mub

j such that entering these

markets would increase firm profits. I first show that there is no single market excluded from the

upper bound that the firm could profitably enter, and then show that this also implies there is no

set of markets excluded from the upper bound that the firm could profitably enter.

Suppose firm j is active in markets Mj ⊆ Mub
j with cj optimally chosen and considers whether

entering a market n ̸∈ Mub
j could increase its profit. Let M̃j = Mj ∪ {n} and let c̃j be the

corresponding optimal productive capability. Since cj is increasing in |Mj |, I know that c̃j > cj . I

also know that at the iteration of the algorithm during which n was dropped from Mub
j the firm was

active in a set of markets M′
j including n and did not make a variable profit in n at the optimal c′

j .

Since the algorithm only ever drops markets at each iteration and Mj ⊆ Mub
j , I know that every

market in M̃j = Mj ∪ {n} must also be in M′
j . I therefore have M′

j ⊇ M̃j which implies c′
j ≥ c̃j .

That is, the firm made a variable loss in n at some c′
j ≥ c̃j > cj . Therefore, it will certainly make a

variable loss in n at cj or c̃j and variable profits made in n cannot be the reason to enter it (since

there are none). Entering n could still increase the firm’s total profit because at M̃j , the fact that

c̃j > cj increases its profit in other markets. But there is nothing stopping the firm from choosing

c̃j at Mj without incurring a variable loss in n. Since at Mj , the firm instead optimally chooses

cj , deviating to c̃j cannot increase total profits. Therefore, the firm would never want to enter any

market n ̸∈ Mub
j .

This argument extends to entering a set of markets Mcand
j that the algorithm excluded from

Mub
j , because cj depends only on the total effective demand of all markets in Mcand

j (not on their

indices, for example). The firm would make a variable loss in any market n ∈ Mcand, so variable

profits cannot be the reason to enter. For the firm’s choice of cj , entering several markets at once is

just like entering one large market, because cj depends only on the sum of αn across all markets the
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firm is active in. For the same reason as above, choosing a different cj cannot increase profits.

E.4 Mass of entrants

Letting Ωi denote the set of entrants in i, so Ni = |Ωi|, country i’s full employment condition is that
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∫

Ωi

1 [aj ≥
¯
ai]


 ∑

n∈Mj

dniqn(j) 1
ajcδ

j

+ fni

+ bβc
1
β

j

+ fi dj

= Ni

∫ ∞

¯
ai

 ∑
n∈Mj

dniqn(j) 1
ajcδ

j

+ fni

+ bβc
1
β

j dFi (aj) + fi


⇔ wiLi = Ni

∫ ∞

¯
ai

 ∑
n∈Mj

dniqn(j) wi

ajcδ
j

+ fniwi

+ bβc
1
β

j wi dFi (aj) + fiwi


(5)= Ni

∫ ∞

¯
ai

 ∑
n∈Mj

µ−σ

(
dni

wi

ajcδ
j

)1−σ

αn + fniwi

+ bβc
1
β

j wi dFi (aj) + fiwi


(8)= Ni

∫ ∞

¯
ai

∑
n∈Mj

( 1
µ

+ 1
σ

)(
µdni

wi

ajcδ
j

)1−σ

αn dFi (aj)

⇔ Ni = µσ−1wσ
i Li∫∞

¯
ai

(
ajcδ

j

)σ−1∑
n∈Mj

d1−σ
ni αn dFi (aj)

E.5 Price index

The price index of country n is

Pn =
(∫

Gn

pn(j)1−σ dj

) 1
1−σ

Letting Eni denote the set of goods produced in i and exported to n,

=
(

N∑
i=1

∫
Eni

pn(j)1−σ dj

) 1
1−σ

Dealing with Eni directly is cumbersome, because it involves conditional probabilities. Instead, let

Oi denote the set of goods produced in i, regardless of where they’re shipped to. Then,

=
(

N∑
i=1

∫
Oi

1 [j ∈ Eni] pn(j)1−σ dj

) 1
1−σ
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which, using that j ∈ Eni ⇔ n ∈ Mj , switching to integrating over the CDF of productivities and

remembering that there is a mass ni of firms active in country i,

=
(
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i=1
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) 1

1−σ

(4)=

 N∑
i=1

ni

∫ ∞

¯
ai

1 [n ∈ Mj ]
(

µdni
wi

ajcδ
j

)1−σ

dFi (aj)

 1
1−σ

Since there will also be a cutoff
¯
ani such that all firms in i with aj ≥

¯
ani will sell in n, and all other

firms in i will not,

= µ

(
N∑

i=1
ni(dniwi)1−σ

∫ ∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)

) 1
1−σ

(16)

E.6 Gravity equation

Sales from firms in i to n are

Xni =
∫

Eni

Sn(j) dj

= ni

∫ ∞

¯
ani

Sn(j) dFi (aj)

(6)= ni

∫ ∞

¯
ani

αn

(
µdni

wi

ajcδ
j

)1−σ

dFi (aj)

= ni(µdniwi)1−σαn

∫ ∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)

which, by definition of αn,

= ni(µdniwi)1−σXnPσ−1
n

∫ ∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)

(16)=
ni(dniwi)1−σ ∫∞

¯
ani

(
ajcδ

j

)σ−1
dFi (aj)∑N

k=1 nk(dnkwk)1−σ ∫∞

¯
ank

(
ajcδ

j

)σ−1
dFk (aj)

Xn

E.7 Home sales as a log-linear function of total sales

From (15), the optimal c can be written as

c
1
β

+δ

j = 1
b

δ(µwi)−σaσ−1
j

 ∑
n∈Mj

dni
1−σαn

 cδσ
j
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⇔ c
1
β

j = 1
b

δ(µwi)−σaσ−1
j

 ∑
n∈Mj

dni
1−σαn

 c
δ(σ−1)
j

⇔ cj =

1
b

δ

µwi

(
µ

wi

ajcδ
j

)1−σ ∑
n∈Mj

dni
1−σαn

β

(6)=

1
b

δ

µwi

∑
n∈Mj

Sn(j)

︸ ︷︷ ︸
≡ S(j)

β

(17)

Plugging (17) into sales to the Home market (6) and remembering that dii = 1 by assumption,

Si(j) = αi

(
µ

wi

aj

[1
b

δ

µwi
S(j)

]−βδ
)1−σ

⇔ log (Si(j)) = log (αi) + (σ − 1)
[
log

( 1
µ

aj

wi

)
+ βδ log

(1
b

δ

µwi
S(j)

)]
⇔ log (Si(j)) = I + log (αi) + (σ − 1) log (aj) − (σ + βδ − 1) log (wi) + (σ − 1) βδ log (S(j))

with

I ≡ (σ − 1)
[
log

( 1
µ

)
+ βδ log

(1
b

δ

µ

)]

E.8 Causal forest estimates the desired quantity

The expectation of the de-meaned outcome, yjt − ȳ, among the set of observations with future

weather data (Djt = 0), is

E [yjt − ȳ|Djt = 0]

= E [yjt|Djt = 0] − E [ȳ|Djt = 0]

The average outcome ȳ is calculated using currently observed firm outcomes (observations with

Djt = 1). Therefore, its expectation across observations with unobserved outcomes is the same as

its expectation across observations with observed outcomes,

= E [yjt|Djt = 0] − E [ȳ|Djt = 1]
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Since ȳ is simply the current average outcome,

= E [yjt|Djt = 0] − Ecurrent [yjt]

Observations with Djt = 0 have weather variables drawn from the future climate Ffuture, so the first

expectation runs across Ffuture,

= Efuture [yjt] − Ecurrent [yjt]

which is the quantity I want to estimate.

E.9 Interpreting causal forest results with log outcomes

Letting O denote the universe of firms in poor countries, ff the measure of future firms, fc the

measure of current firms, yf
j firm j’s future outcome and yc

j firm j’s current outcome, the causal

forest estimand becomes (see below for a note on j vs. jt indexing)

Efuture [yj ] − Ecurrent [yj ]

=
∫

j∈O
yf

j ff (j) dj −
∫

j∈O
yc

jfc(j) dj

Now, since the sets of firms in the current and future periods are identical, the measure of firms

does not change, ff = fc = f , so

=
∫

j∈O

(
yf

j − yc
j

)
f(j) dj

Plugging in the outcome used in the estimation, log sales, yt
i = log (sp

i ) , p ∈ {c, f},

=
∫

j∈O

(
log

(
sf

j

)
− log

(
sc

j

))
f(j) dj

=
∫

j∈O
log

sf
j

sc
j

 f(j) dj

= E

log

sf
j

sc
j


which is the average log change in sales, or in other words, the average firm’s decline in sales. Note

that I abstract from the time dimension within the current and future periods here and move to j
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instead of jt indexing. This is purely for simplicity of the presentation. In practice, each firm j I

observe in the sample has many future potential realizations yf
jt across future periods t. Explicitly

including this time dimension and moving to jt indexing just introduces a second inner layer of

averaging, such that the causal forest estimates

E

E
log

sf
j

sc
j

∣∣∣∣∣∣j
 = E

log

sf
j

sc
j


where the inner conditional expectation runs over future periods t for firm j, while the outer

expectation runs across firms j.
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